Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemarie Weikard is active.

Publication


Featured researches published by Rosemarie Weikard.


Mammalian Genome | 1997

A medium-density genetic linkage map of the bovine genome

W. Barendse; D. Vaiman; Stephen J. Kemp; Yoshikazu Sugimoto; S. M. Armitage; J. L. Williams; H. S. Sun; A. Eggen; Morris Agaba; S. A. Aleyasin; Mark Band; M. D. Bishop; J. Buitkamp; K. Byrne; F. Collins; L. Cooper; W. Coppettiers; B. Denys; R. D. Drinkwater; K. Easterday; C. Elduque; Sean Ennis; G. Erhardt; L. Ferretti; N. Flavin; Q. Gao; Michel Georges; R. Gurung; B. Harlizius; G. Hawkins

A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are assigned to chromosomes, and all are orientated with regards to the centromere. There is little overall difference in the lengths of the bull and cow linkage maps although there are individual differences between maps of chromosomes. One hundred and sixty polymorphisms are in or near genes, and the resultant genome-wide comparative analyses indicate that while there is greater conservation of synteny between cattle and humans compared with mice, the conservation of gene order between cattle and humans is much less than would be expected from the conservation of synteny. This map provides a basis for high-resolution mapping of the bovine genome with physical resources such as Yeast and Bacterial Artificial Chromosomes as well as providing the underpinning for the interpolation of information from the Human Genome Project.USDA-MARC family and data for validating this family. P. Creighton, C. Skidmore, T. Holm, and A. Georgoudis provided some validation data for the BOVMAP families. R. Fries, S. Johnson, S. Solinas Toldo, and A. Mezzelani kindly made some of their FISH assignments available before publication. We wish to thank all those researchers who kindly sent us probes and DNA primers.


Genetics | 2009

Dissection of Genetic Factors Modulating Fetal Growth in Cattle Indicates a Substantial Role of the Non-SMC Condensin I Complex, Subunit G (NCAPG) Gene

Annett Eberlein; Akiko Takasuga; Kouji Setoguchi; Ralf Pfuhl; Krzysztof Flisikowski; Ruedi Fries; Norman Klopp; Rainer Fürbass; Rosemarie Weikard; Christa Kühn

The increasing evidence of fetal developmental effects on postnatal life, the still unknown fetal growth mechanisms impairing offspring generated by somatic nuclear transfer techniques, and the impact on stillbirth and dystocia in conventional reproduction have generated increasing attention toward mammalian fetal growth. We identified a highly significant quantitative trait locus (QTL) affecting fetal growth on bovine chromosome 6 in a specific resource population, which was set up by consistent use of embryo transfer and foster mothers and, thus, enabled dissection of fetal-specific genetic components of fetal growth. Merging our data with results from other cattle populations differing in historical and geographical origin and with comparative data from human whole-genome association mapping suggests that a nonsynonymous polymorphism in the non-SMC condensin I complex, subunit G (NCAPG) gene, NCAPG c.1326T>G, is the potential cause of the identified QTL resulting in divergent bovine fetal growth. NCAPG gene expression data in fetal placentomes with different NCAPG c.1326T>G genotypes, which are in line with recent results about differential NCAPG expression in placentomes from studies on assisted reproduction techniques, indicate that the NCAPG locus may give valuable information on the specific mechanisms regulating fetal growth in mammals.


BMC Genomics | 2008

A first generation whole genome RH map of the river buffalo with comparison to domestic cattle

M. Elisabete J. Amaral; Jason R. Grant; Penny K. Riggs; N. B. Stafuzza; Edson Almeida Filho; Tom Goldammer; Rosemarie Weikard; Ronald M. Brunner; Kelli J. Kochan; Anthony J Greco; Jooha Jeong; Zhipeng Cai; Guohui Lin; Aparna Prasad; Satish Kumar; G Pardha Saradhi; Boby Mathew; M Aravind Kumar; Melissa N Miziara; Paola Mariani; Alexandre R Caetano; Stephan R Galvão; M. S. Tantia; R. K. Vijh; Bina Mishra; S T Bharani Kumar; Vanderlei A Pelai; André M. Santana; Larissa Fornitano; Brittany C Jones

BackgroundThe recently constructed river buffalo whole-genome radiation hybrid panel (BBURH5000) has already been used to generate preliminary radiation hybrid (RH) maps for several chromosomes, and buffalo-bovine comparative chromosome maps have been constructed. Here, we present the first-generation whole genome RH map (WG-RH) of the river buffalo generated from cattle-derived markers. The RH maps aligned to bovine genome sequence assembly Btau_4.0, providing valuable comparative mapping information for both species.ResultsA total of 3990 markers were typed on the BBURH5000 panel, of which 3072 were cattle derived SNPs. The remaining 918 were classified as cattle sequence tagged site (STS), including coding genes, ESTs, and microsatellites. Average retention frequency per chromosome was 27.3% calculated with 3093 scorable markers distributed in 43 linkage groups covering all autosomes (24) and the X chromosomes at a LOD ≥ 8. The estimated total length of the WG-RH map is 36,933 cR5000. Fewer than 15% of the markers (472) could not be placed within any linkage group at a LOD score ≥ 8. Linkage group order for each chromosome was determined by incorporation of markers previously assigned by FISH and by alignment with the bovine genome sequence assembly (Btau_4.0).ConclusionWe obtained radiation hybrid chromosome maps for the entire river buffalo genome based on cattle-derived markers. The alignments of our RH maps to the current bovine genome sequence assembly (Btau_4.0) indicate regions of possible rearrangements between the chromosomes of both species. The river buffalo represents an important agricultural species whose genetic improvement has lagged behind other species due to limited prior genomic characterization. We present the first-generation RH map which provides a more extensive resource for positional candidate cloning of genes associated with complex traits and also for large-scale physical mapping of the river buffalo genome.


BMC Genomics | 2013

Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing.

Rosemarie Weikard; Frieder Hadlich; Christa Kuehn

BackgroundDeep RNA sequencing (RNAseq) has opened a new horizon for understanding global gene expression. The functional annotation of non-model mammalian genomes including bovines is still poor compared to that of human and mouse. This particularly applies to tissues without direct significance for milk and meat production, like skin, in spite of its multifunctional relevance for the individual. Thus, applying an RNAseq approach, we performed a whole transcriptome analysis of pigmented and nonpigmented bovine skin to describe the comprehensive transcript catalogue of this tissue.ResultsA total of 39,577 unique primary skin transcripts were mapped to the bovine reference genome assembly. The majority of the transcripts were mapped to known transcriptional units (65%). In addition to the reannotation of known genes, a substantial number (10,884) of unknown transcripts (UTs) were discovered, which had not previously been annotated. The classification of UTs was based on the prediction of their coding potential and comparative sequence analysis, subsequently followed by meticulous manual curation. The classification analysis and experimental validation of selected UTs confirmed that RNAseq data can be used to amend the annotation of known genes by providing evidence for additional exons, untranslated regions or splice variants, by approving genes predicted in silico and by identifying novel bovine loci. A large group of UTs (4,848) was predicted to potentially represent long noncoding RNA (lncRNA). Predominantly, potential lncRNAs mapped in intergenic chromosome regions (4,365) and therefore, were classified as potential intergenic lncRNA. Our analysis revealed that only about 6% of all UTs displayed interspecies conservation and discovered a variety of unknown transcripts without interspecies homology but specific expression in bovine skin.ConclusionsThe results of our study demonstrate a complex transcript pattern for bovine skin and suggest a possible functional relevance of novel transcripts, including lncRNA, in the modulation of pigmentation processes. The results also indicate that the comprehensive identification and annotation of unknown transcripts from whole transcriptome analysis using RNAseq data remains a tremendous future challenge.


Physiological Genomics | 2010

Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition

Rosemarie Weikard; Elisabeth Altmaier; Karsten Suhre; Klaus M. Weinberger; H.M. Hammon; Elke Albrecht; Kouji Setoguchi; Akiko Takasuga; Christa Kühn

Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.


Animal Genetics | 2011

The SNP c.1326T>G in the non‐SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle

K. Setoguchi; T. Watanabe; Rosemarie Weikard; Elke Albrecht; Christa Kühn; A. Kinoshita; Yoshikazu Sugimoto; Akiko Takasuga

Recently, we had located a bovine carcass weight QTL, CW-2, to a 591-kb interval on BTA6 and have identified the SNP c.1326T>G in the NCAPG (non-SMC condensin I complex, subunit G) gene that leads to the amino acid change p.Ile442Met in the NCAPG protein, which is a candidate causative variation. Here, we examined the association of the NCAPG:c.1326T>G locus with linear skeletal measurements of growth-associated traits during adolescence, which is a period of intensive growth, using two historically and geographically distant cattle populations: 792 Japanese Black steers and 161 F(2) bulls of an experimental cross from Charolais and German Holstein. In both populations, the SNP NCAPG:c.1326T>G was associated with each component of body frame size: height, length and width at puberty. The associations of CW-2 with height- and length-associated traits were observed at an earlier growth period compared to the associations with thickness- and width-associated traits, indicating that the primary effect of the CW-2 QTL may possibly be exerted on skeletal growth. The significant associations of the NCAPG:c.1326T>G locus with growth-associated skeletal measurements are similar to the effects of the syntenic region on human chromosome 4 that are associated with adult height in humans, supporting the hypothesis that CW-2 is analogous to the human locus and pointing to a conserved growth-associated locus or chromosomal region present in both species.


BMC Genetics | 2007

Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows

Christa Kuehn; Christian Edel; Rosemarie Weikard; G. Thaller

BackgroundSubstantial gene substitution effects on milk production traits have formerly been reported for alleles at the K232A and the promoter VNTR loci in the bovine acylCoA-diacylglycerol-acyltransferase 1 (DGAT1) gene by using data sets including sires with accumulated phenotypic observations of daughters (breeding values, daughter yield deviations). However, these data sets prevented analyses with respect to dominance or parent-of-origin effects, although an increasing number of reports in the literature outlined the relevance of non-additive gene effects on quantitative traits.ResultsBased on a data set comprising German Holstein cows with direct trait measurements, we first confirmed the previously reported association of DGAT1 promoter VNTR alleles with milk production traits. We detected a dominant mode of effects for the DGAT1 K232A and promoter VNTR alleles. Namely, the contrasts between the effects of heterozygous individuals at the DGAT1 loci differed significantly from the midpoint between the effects for the two homozygous genotypes for several milk production traits, thus indicating the presence of dominance. Furthermore, we identified differences in the magnitude of effects between paternally and maternally inherited DGAT1 promoter VNTR – K232A haplotypes indicating parent-of-origin effects on milk production traits.ConclusionNon-additive effects like those identified at the bovine DGAT1 locus have to be accounted for in more specific QTL detection models as well as in marker assisted selection schemes. The DGAT1 alleles in cattle will be a useful model for further investigations on the biological background of non-additive effects in mammals due to the magnitude and consistency of their effects on milk production traits.


BMC Genomics | 2013

A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle

Philipp Widmann; Antonio Reverter; M. R. S. Fortes; Rosemarie Weikard; Karsten Suhre; H.M. Hammon; Elke Albrecht; Christa Kuehn

BackgroundSystems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight.ResultsOur study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth.ConclusionsMerging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior functional hypothesis was demonstrated by data suggesting that NCAPG might contribute to vascular smooth muscle contraction by indirect effects on the NO pathway via modulation of arginine metabolism. Our study shows for the first time in cattle that integration of genetic, physiological and metabolomics data in a systems biology approach will enable (or contribute to) an improved understanding of metabolic and gene networks and genotype-phenotype relationships.


Journal of Dairy Science | 2010

Differences in milk production, glucose metabolism, and carcass composition of 2 Charolais × Holstein F2 families derived from reciprocal paternal and maternal grandsire crosses1

H.M. Hammon; Cornelia C. Metges; André Schulz; Peter Junghans; Julia Steinhoff; Falk Schneider; Ralf Pfuhl; Rupert Bruckmaier; Rosemarie Weikard; Christa Kühn

Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.


BMC Genomics | 2006

A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

Rosemarie Weikard; Tom Goldammer; Pascal Laurent; James E. Womack; Christa Kuehn

BackgroundA number of different quantitative trait loci (QTL) for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6). Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL.ResultsTherefore, we constructed a high-resolution radiation hybrid (RH) map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken) achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included.ConclusionThe gene-anchored high-resolution RH map (1 locus/300 kb) for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and annotation of the currently existing bovine genome sequence draft to establish the final architecture of BTA6. Hence, a sequence-based map will provide a key resource to facilitate prospective continued efforts for the selection and validation of relevant positional and functional candidates underlying QTL for milk production and growth-related traits mapped on BTA6 and on similar chromosomal regions from evolutionary closely related species like sheep and goat. Furthermore, the high-resolution sequence-referenced BTA6 map will enable precise identification of multi-species conserved chromosome segments and evolutionary breakpoints in mammalian phylogenetic studies.

Collaboration


Dive into the Rosemarie Weikard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge