Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frieder Hadlich is active.

Publication


Featured researches published by Frieder Hadlich.


BMC Genomics | 2013

Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing.

Rosemarie Weikard; Frieder Hadlich; Christa Kuehn

BackgroundDeep RNA sequencing (RNAseq) has opened a new horizon for understanding global gene expression. The functional annotation of non-model mammalian genomes including bovines is still poor compared to that of human and mouse. This particularly applies to tissues without direct significance for milk and meat production, like skin, in spite of its multifunctional relevance for the individual. Thus, applying an RNAseq approach, we performed a whole transcriptome analysis of pigmented and nonpigmented bovine skin to describe the comprehensive transcript catalogue of this tissue.ResultsA total of 39,577 unique primary skin transcripts were mapped to the bovine reference genome assembly. The majority of the transcripts were mapped to known transcriptional units (65%). In addition to the reannotation of known genes, a substantial number (10,884) of unknown transcripts (UTs) were discovered, which had not previously been annotated. The classification of UTs was based on the prediction of their coding potential and comparative sequence analysis, subsequently followed by meticulous manual curation. The classification analysis and experimental validation of selected UTs confirmed that RNAseq data can be used to amend the annotation of known genes by providing evidence for additional exons, untranslated regions or splice variants, by approving genes predicted in silico and by identifying novel bovine loci. A large group of UTs (4,848) was predicted to potentially represent long noncoding RNA (lncRNA). Predominantly, potential lncRNAs mapped in intergenic chromosome regions (4,365) and therefore, were classified as potential intergenic lncRNA. Our analysis revealed that only about 6% of all UTs displayed interspecies conservation and discovered a variety of unknown transcripts without interspecies homology but specific expression in bovine skin.ConclusionsThe results of our study demonstrate a complex transcript pattern for bovine skin and suggest a possible functional relevance of novel transcripts, including lncRNA, in the modulation of pigmentation processes. The results also indicate that the comprehensive identification and annotation of unknown transcripts from whole transcriptome analysis using RNAseq data remains a tremendous future challenge.


BMC Genomics | 2013

Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties

Siriluck Ponsuksili; Yang Du; Frieder Hadlich; Puntita Siengdee; Eduard Murani; Manfred Schwerin; Klaus Wimmers

BackgroundPhysiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes.ResultsWe applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits.ConclusionsPorcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.


Biology of Reproduction | 2014

Differential Expression of miRNAs and Their Target mRNAs in Endometria Prior to Maternal Recognition of Pregnancy Associates with Endometrial Receptivity for In Vivo- and In Vitro-Produced Bovine Embryos

Siriluck Ponsuksili; Dawit Tesfaye; Karl Schellander; M. Hoelker; Frieder Hadlich; Manfred Schwerin; Klaus Wimmers

ABSTRACT Endometrial receptivity is a prerequisite for successful embryo implantation and pregnancy. Receptivity involves complex processes promoted by many transcripts that are key components of molecular pathways that depend on ovarian hormones and that contribute to shaping structural, metabolic, and communication properties of endometrial cells toward reception of embryos. MicroRNAs (miRNAs) are important regulators of the expression of these transcripts encoding effector molecules. We acquired miRNA and mRNA signatures, miRNA-mRNA pairs, and regulatory networks linked with the emergence and maintenance of postimplantation pregnancy. Endometrial tissue samples were obtained at Days 3 and 7 of the estrous cycle of cows that did or did not become pregnant after transfer of either in vivo-produced (IVV) or in vitro-produced (IVT) embryos in the next cycle following the biopsy. We report a list of endometrial miRNAs that were differentially expressed between Day 3 and Day 7 of the bovine estrous cycle (including miR-1290, miR-3437, miR-1246, miR-486, miR-3107, and miR-382), that differed with high or low endometrial receptivity (miR-3902-3p, miR-1825, miR-H14-3p, miR-885-3p, miR-504-3p, and miR-186), or that differed among the IVT and IVV transfers (miR-449a/b/c, miR-138, miR-874, miR-4342, miR-2231, and miR-2751). Moreover, mRNA transcripts were also analyzed, and pairs of negatively correlated miRNAs and mRNAs were predicted in silico. The miRNA-mRNA target pairs had roles in response to hormonal stimuli and oxidative stress, chromatin organization, miRNA-mediated epigenetic histone changes, cell proliferation, p53 signaling, and apoptosis. Overall, we identified significant miRNAs, miRNA-mRNA pairs, and functional networks that are associated with the state of pregnancy at Day 28 as a parameter of endometrial receptivity and that are affected by estrous cycle and embryo culture systems.


Veterinary Research | 2013

Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptome analysis in cattle

Wiebke Demasius; Rosemarie Weikard; Frieder Hadlich; Kerstin Müller; Christa Kühn

Bovine neonatal pancytopenia (BNP) is a new fatal, alloimmune/alloantibody mediated disease of new-born calves induced by ingestion of colostrum from cows, which had been vaccinated with a specific vaccine against the Bovine Virus Diarrhoea Virus (BVDV). The hypothesis of pathogenic MHC class I molecules in the vaccine had been put up, but no formal proof of specific causal MHC class I alleles has been provided yet. However, the unique features of the vaccine obviously result in extremely high specific antibody titres in the vaccinated animals, but apparently also in further molecules inducing BNP. Thus, a comprehensive picture of the immune response to the vaccine is essential. Applying the novel approach of next generation RNA sequencing (RNAseq), our study provides a new holistic, comprehensive analysis of the blood transcriptome regulation after vaccination with the specific BVDV vaccine. Our RNAseq approach identified a novel cytokine-like gene in the bovine genome that is highly upregulated after vaccination. This gene has never been described before in any other species and might be specific to ruminant immune response. Furthermore, our data revealed a very coordinated immune response to double-stranded (ds) RNA or a dsRNA analogue after vaccination with the inactivated single-stranded (ss) RNA vaccine. This would suggest either a substantial contamination of the vaccine with dsRNA from host cells after virus culture or a dsRNA analogue applied to the vaccine. The first option would highlight the potential risks associated with virus culture on homologous cells during vaccine production; the latter option would emphasise the potential risks associated with immune stimulating adjuvants used in vaccine production.


PLOS ONE | 2015

Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

Bodo Brand; Frieder Hadlich; Bettina Brandt; Nicolas Schauer; K L Graunke; Jan Langbein; Dirk Repsilber; S. Ponsuksili; Manfred Schwerin

In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.


Genetics | 2015

The Mammalian Cervical Vertebrae Blueprint Depends on the T ( brachyury ) Gene

Andreas Kromik; Reiner Ulrich; Marian Kusenda; Andrea Tipold; Veronika M. Stein; Maren Hellige; Peter Dziallas; Frieder Hadlich; Philipp Widmann; Tom Goldammer; Wolfgang Baumgärtner; J. Rehage; Dierck Segelke; Rosemarie Weikard; Christa Kühn

A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development.


BMC Genomics | 2016

MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities

Xuan Liu; Nares Trakooljul; Frieder Hadlich; Eduard Murani; Klaus Wimmers; Siriluck Ponsuksili

BackgroundMicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in diverse biological processes via regulation of gene expression including in skeletal muscles. In the current study, miRNA expression profile was investigated in longissimus muscle biopsies of malignant hyperthermia syndrome-negative Duroc and Pietrain pigs with distinct muscle metabolic properties in order to explore the regulatory role of miRNAs related to mitochondrial respiratory activity and metabolic enzyme activity in skeletal muscle.ResultsA comparative analysis of the miRNA expression profile between Duroc and Pietrain pigs was performed, followed by integration with mRNA profiles based on their pairwise correlation and computational target prediction. The identified target genes were enriched in protein ubiquitination pathway, stem cell pluripotency and geranylgeranyl diphosphate biosynthesis, as well as skeletal and muscular system development. Next, we analyzed the correlation between individual miRNAs and phenotypical traits including muscle fiber type, mitochondrial respiratory activity, metabolic enzyme activity and adenosine phosphate concentrations, and constructed the regulatory miRNA-mRNA networks associated with energy metabolism. It is noteworthy that miR-25 targeting BMPR2 and IRS1, miR-363 targeting USP24, miR-28 targeting HECW2 and miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with slow-twitch oxidative fibers, fast-twitch oxidative fibers, ADP and ATP concentration suggesting an essential role of the miRNA-mRNA regulatory networking in modulating the mitochondrial energy expenditure in the porcine muscle. In the identified miRNA-mRNA network, a tight relationship between mitochondrial and ubiquitin proteasome system at the level of gene expression was observed. It revealed a link between these two systems contributing to energy metabolism of skeletal muscle under physiological conditions.ConclusionsWe assembled miRNA-mRNA regulatory networks based on divergent muscle properties between different pig breeds and further with the correlation analysis of expressed genes and phenotypic measurements. These complex networks relate to muscle fiber type, metabolic enzyme activity and ATP production and may contribute to divergent muscle phenotypes by fine-tuning the expression of genes. Altogether, the results provide an insight into a regulatory role of miRNAs in muscular energy metabolisms and may have an implication on meat quality and production.


Scientific Reports | 2016

Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits.

Siriluck Ponsuksili; Nares Trakooljul; Frieder Hadlich; Fiete Haack; Eduard Murani; Klaus Wimmers

The liver is the central metabolic organ and exhibits fundamental functions in haematological traits. Hepatic expression, haematological, plasma biochemical, and body composition traits were assessed in a porcine model (n = 297) to establish tissue-specific genetic variations that influence the function of immune-metabolism-correlated expression networks. At FDR (false discovery rate) <1%, more than 3,600 transcripts were jointly correlated (r = |0.22–0.48|) with the traits. Functional enrichment analysis demonstrated common links of metabolic and immune traits. To understand how immune and metabolic traits are affected via genetic regulation of gene expression, eQTLs were assessed. 20517 significant (FDR < 5%) eQTLs for 1401 transcripts were identified, among which 443 transcripts were associated with at least one of the examined traits and had cis-eQTL (such as ACO1 (6.52 × 10−7) and SOD1 (6.41 × 10−30). The present study establishes a comprehensive view of hepatic gene activity which links together metabolic and immune traits in a porcine model for medical research.


BMC Genomics | 2016

A novel RNAseq-assisted method for MHC class I genotyping in a non-model species applied to a lethal vaccination-induced alloimmune disease.

Wiebke Demasius; Rosemarie Weikard; Frieder Hadlich; Johannes Buitkamp; Christa Kühn

BackgroundMHC class I genotyping is essential for a wide range of biomedical, immunological and biodiversity applications. Whereas in human a comprehensive MHC class I allele catalogue is available, respective data in non-model species is scarce in spite of decades of research.ResultsTaking advantage of the new high-throughput RNA sequencing technology (RNAseq), we developed a novel RNAseq-assisted method (RAMHCIT) for MHC class I typing at nucleotide level. RAMHCIT is performed on white blood cells, which highly express MHC class I molecules enabling reliable discovery of new alleles and discrimination of closely related alleles due to the high coverage of alleles with reads. RAMHCIT is more comprehensive than previous methods, because no targeted PCR pre-amplification of MHC loci is necessary, which avoids preselection of alleles as usually encountered, when amplification with MHC class I primers is performed prior to sequencing. In addition to allele identification, RAMHCIT also enables quantification of MHC class I expression at allele level, which was remarkably consistent across individuals.ConclusionsSuccessful application of RAMHCIT is demonstrated on a data set from cattle with different phenotype regarding a lethal, vaccination-induced alloimmune disease (bovine neonatal pancytopenia), for which MHC class I alleles had been postulated as causal agents.


PLOS ONE | 2015

Different Blood Cell-Derived Transcriptome Signatures in Cows Exposed to Vaccination Pre- or Postpartum.

Rosemarie Weikard; Wiebke Demasius; Frieder Hadlich; Christa Kühn

Periparturient cows have been found to reveal immunosuppression, frequently associated with increased susceptibility to uterine and mammary infections. To improve understanding of the causes and molecular regulatory mechanisms accounting for this phenomenon around calving, we examined the effect of an antigen challenge on gene expression modulation on cows prior to (BC) or after calving (AC) using whole transcriptome sequencing (RNAseq). The transcriptome analysis of the cows’ blood identified a substantially higher number of loci affected in BC cows (2,235) in response to vaccination compared to AC cows (208) and revealed a divergent transcriptional profile specific for each group. In BC cows, a variety of loci involved in immune defense and cellular signaling processes were transcriptionally activated, whereas protein biosynthesis and posttranslational processes were tremendously impaired in response to vaccination. Furthermore, energy metabolism in the blood cells of BC cows was shifted from oxidative phosphorylation to the glycolytic system. In AC cows, the number and variety of regulated pathways involved in immunomodulation and maintenance of immnunocompetence are considerably lower after vaccination, and upregulation of arginine degradation was suggested as an immunosuppressive mechanism. Elevated transcript levels of erythrocyte-specific genes involved in gas exchange processes were a specific transcriptional signature in AC cows pointing to hematopoiesis activation. The divergent and substantially lower magnitude of transcriptional modulation in response to vaccination in AC cows provides evidence for a suppressed immune capacity of early lactating cows on the molecular level and demonstrates that an efficient immune response of cows is related to their physiological and metabolic status.

Collaboration


Dive into the Frieder Hadlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge