Christian Höner zu Siederdissen
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Höner zu Siederdissen.
Algorithms for Molecular Biology | 2011
Ronny Lorenz; Stephan H. Bernhart; Christian Höner zu Siederdissen; Hakim Tafer; Christoph Flamm; Peter F. Stadler; Ivo L. Hofacker
BackgroundSecondary structure forms an important intermediate level of description of nucleic acids that encapsulates the dominating part of the folding energy, is often well conserved in evolution, and is routinely used as a basis to explain experimental findings. Based on carefully measured thermodynamic parameters, exact dynamic programming algorithms can be used to compute ground states, base pairing probabilities, as well as thermodynamic properties.ResultsThe ViennaRNA Package has been a widely used compilation of RNA secondary structure related computer programs for nearly two decades. Major changes in the structure of the standard energy model, the Turner 2004 parameters, the pervasive use of multi-core CPUs, and an increasing number of algorithmic variants prompted a major technical overhaul of both the underlying RNAlib and the interactive user programs. New features include an expanded repertoire of tools to assess RNA-RNA interactions and restricted ensembles of structures, additional output information such as centroid structures and maximum expected accuracy structures derived from base pairing probabilities, or z-scores for locally stable secondary structures, and support for input in fasta format. Updates were implemented without compromising the computational efficiency of the core algorithms and ensuring compatibility with earlier versions.ConclusionsThe ViennaRNA Package 2.0, supporting concurrent computations via OpenMP, can be downloaded from http://www.tbi.univie.ac.at/RNA.
intelligent systems in molecular biology | 2011
Christian Höner zu Siederdissen; Stephan H. F. Bernhart; Peter F. Stadler; Ivo L. Hofacker
Motivation: RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. Results: We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. Availability: All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/. Contact: [email protected]
RNA | 2015
Peter Kerpedjiev; Christian Höner zu Siederdissen; Ivo L. Hofacker
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.
IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2013
Ronny Lorenz; Stephan H. Bernhart; Jing Qin; Christian Höner zu Siederdissen; Andrea Tanzer; Fabian Amman; Ivo L. Hofacker; Peter F. Stadler
G-quadruplexes are abundant locally stable structural elements in nucleic acids. The combinatorial theory of RNA structures and the dynamic programming algorithms for RNA secondary structure prediction are extended here to incorporate G-quadruplexes using a simple but plausible energy model. With preliminary energy parameters, we find that the overwhelming majority of putative quadruplex-forming sequences in the human genome are likely to fold into canonical secondary structures instead. Stable G-quadruplexes are strongly enriched, however, in the 5Ê1UTR of protein coding mRNAs.
international conference on functional programming | 2012
Christian Höner zu Siederdissen
We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.
Biopolymers | 2013
Christian Höner zu Siederdissen; Stefan Hammer; Ingrid G. Abfalter; Ivo L. Hofacker; Christoph Flamm; Peter F. Stadler
RNA has become an integral building material in synthetic biology. Dominated by their secondary structures, which can be computed efficiently, RNA molecules are amenable not only to in vitro and in vivo selection, but also to rational, computation‐based design. While the inverse folding problem of constructing an RNA sequence with a prescribed ground‐state structure has received considerable attention for nearly two decades, there have been few efforts to design RNAs that can switch between distinct prescribed conformations. We introduce a user‐friendly tool for designing RNA sequences that fold into multiple target structures. The underlying algorithm makes use of a combination of graph coloring and heuristic local optimization to find sequences whose energy landscapes are dominated by the prescribed conformations. A flexible interface allows the specification of a wide range of design goals. We demonstrate that bi‐ and tri‐stable “switches” can be designed easily with moderate computational effort for the vast majority of compatible combinations of desired target structures. RNAdesign is freely available under the GPL‐v3 license.
Nucleic Acids Research | 2016
Florian Eggenhofer; Ivo L. Hofacker; Christian Höner zu Siederdissen
Abstract Determining the function of a non-coding RNA requires costly and time-consuming wet-lab experiments. For this reason, computational methods which ascertain the homology of a sequence and thereby deduce functionality and family membership are often exploited. In this fashion, newly sequenced genomes can be annotated in a completely computational way. Covariance models are commonly used to assign novel RNA sequences to a known RNA family. However, to construct such models several examples of the family have to be already known. Moreover, model building is the work of experts who manually edit the necessary RNA alignment and consensus structure. Our method, RNAlien, starting from a single input sequence collects potential family member sequences by multiple iterations of homology search. RNA family models are fully automatically constructed for the found sequences. We have tested our method on a subset of the RfamRNA family database. RNAlien models are a starting point to construct models of comparable sensitivity and specificity to manually curated ones from the Rfam database. RNAlien Tool and web server are available at http://rna.tbi.univie.ac.at/rnalien/.
Bioinformatics | 2010
Christian Höner zu Siederdissen; Ivo L. Hofacker
Motivation: RNA family models group nucleotide sequences that share a common biological function. These models can be used to find new sequences belonging to the same family. To succeed in this task, a model needs to exhibit high sensitivity as well as high specificity. As model construction is guided by a manual process, a number of problems can occur, such as the introduction of more than one model for the same family or poorly constructed models. We explore the Rfam database to discover such problems. Results: Our main contribution is in the definition of the discriminatory power of RNA family models, together with a first algorithm for its computation. In addition, we present calculations across the whole Rfam database that show several families lacking high specificity when compared to other families. We give a list of these clusters of families and provide a tentative explanation. Our program can be used to: (i) make sure that new models are not equivalent to any model already present in the database; and (ii) new models are not simply submodels of existing families. Availability: www.tbi.univie.ac.at/software/cmcompare/. The code is licensed under the GPLv3. Results for the whole Rfam database and supporting scripts are available together with the software. Contact: [email protected]
IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2015
Christian Höner zu Siederdissen; Ivo L. Hofacker; Peter F. Stadler
We develop a theory of algebraic operations over linear and context-free grammars that makes it possible to combine simple “atomic” grammars operating on single sequences into complex, multi-dimensional grammars. We demonstrate the utility of this framework by constructing the search spaces of complex alignment problems on multiple input sequences explicitly as algebraic expressions of very simple one-dimensional grammars. In particular, we provide a fully worked frameshift-aware, semiglobal DNA-protein alignment algorithm whose grammar is composed of products of small, atomic grammars. The compiler accompanying our theory makes it easy to experiment with the combination of multiple grammars and different operations. Composite grammars can be written out in LATEX for documentation and as a guide to implementation of dynamic programming algorithms. An embedding in Haskell as a domain-specific language makes the theory directly accessible to writing and using grammar products without the detour of an external compiler. Software and supplemental files available here: http://www.bioinf. uni-leipzig.de/Software/gramprod/.
Cellular and Molecular Life Sciences | 2017
Gesche K. Gerresheim; Nadia Dünnes; Anika Nieder-Röhrmann; Lyudmila A. Shalamova; Markus Fricke; Ivo L. Hofacker; Christian Höner zu Siederdissen; Manja Marz; Michael Niepmann
We have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3′ untranslated region (3′UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites. This suggests that the dynamics of miRNA/Ago2 binding not only depends on the target site itself but also on flanking sequence context to a considerable extent, in particular in a small viral genome in which strong selection constraints act on coding sequence and overlapping cis-signals and model the accessibility of cis-signals. In full-length genomes, single and combination mutations in the miR-122 target sites reveal that site 5B.2 is positively involved in regulating overall genome replication efficiency, whereas mutation of site 5B.3 showed a weaker effect. Mutation of the 3′UTR site and double or triple mutants showed no significant overall effect on genome replication, whereas in a translation reporter RNA, the 3′UTR target site inhibits translation directed by the HCV 5′UTR. Thus, the miR-122 target sites in the 3′-region of the HCV genome are involved in a complex interplay in regulating different steps of the HCV replication cycle.