Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christin Säwström is active.

Publication


Featured researches published by Christin Säwström.


Microbial Ecology | 2007

Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes

Christin Säwström; Alexandre M. Anesio; Wilhelm Granéli; Johanna Laybourn-Parry

The effect of viruses on the microbial loop, with particular emphasis on bacteria, was investigated over an annual cycle in 2003–2004 in Lake Druzhby and Crooked Lake, two large ultraoligotrophic freshwater lakes in the Vestfold Hills, Eastern Antarctica. Viral abundance ranged from 0.16 to 1.56 × 109 particles L-1;1 and bacterial abundances ranged from 0.10 to 0.24 × 109 cells L-1;1, with the lowest bacterial abundances noted in the winter months. Virus-to-bacteria ratios (VBR) were consistently low in both lakes throughout the season, ranging from 1.2 to 8.4. lysogenic bacteria, determined by induction with mitomycin C, were detected on three sampling occasions out of 10 in both lakes. In Lake Druzhby and Crooked Lake, lysogenic bacteria made up between 18% and 73% of the total bacteria population during the lysogenic events. Bacterial production ranged from 8.2 to 304.9 × 106 cells L-1;1 day-1;1 and lytic viral production ranged from 47.5 to 718.4 × 106 viruslike particles L-1;1 day-1;1. When only considering primary production, heterotrophic nanoflagellate (HNF) grazing and viral lysis as the major contributors to the DOC pool (i.e., autochthonous sources), we estimated a high contribution from viruses during the winter months when >60% of the carbon supplied to the DOC pool originated from viral lysis. In contrast, during the summer <20% originated from viral lysis. Our study shows that viral process in ultraoligotrophic Antarctic lakes may be of quantitative significance with respect to carbon flow especially during the dark winter period.


Extremophiles | 2008

Bacteriophage in polar inland waters

Christin Säwström; John T. Lisle; Alexandre M. Anesio; John C. Priscu; Johanna Laybourn-Parry

Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.


Applied and Environmental Microbiology | 2009

High ratio of bacteriochlorophyll biosynthesis genes to chlorophyll biosynthesis genes in bacteria of humic lakes

Alexander Eiler; Sara Beier; Christin Säwström; Jan Karlsson; Stefan Bertilsson

ABSTRACT Recent studies highlight the diversity and significance of marine phototrophic microorganisms such as picocyanobacteria, phototrophic picoeukaryotes, and bacteriochlorophyll- and rhodopsin-holding phototrophic bacteria. To assess if freshwater ecosystems also harbor similar phototroph diversity, genes involved in the biosynthesis of bacteriochlorophyll and chlorophyll were targeted to explore oxygenic and aerobic anoxygenic phototroph composition in a wide range of lakes. Partial dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide oxidoreductase (COR) genes in bacteria of seven lakes with contrasting trophic statuses were PCR amplified, cloned, and sequenced. Out of 61 sequences encoding the L subunit of DPOR (L-DPOR), 22 clustered with aerobic anoxygenic photosynthetic bacteria, whereas 39 L-DPOR sequences related to oxygenic phototrophs, like cyanobacteria, were observed. Phylogenetic analysis revealed clear separation of these freshwater L-DPOR genes as well as 11 COR gene sequences from their marine counterparts. Terminal restriction fragment length analysis of L-DPOR genes was used to characterize oxygenic aerobic and anoxygenic photosynthesizing populations in 20 lakes differing in physical and chemical characteristics. Significant differences in L-DPOR community composition were observed between dystrophic lakes and all other systems, where a higher proportion of genes affiliated with aerobic anoxygenic photosynthetic bacteria was observed than in other systems. Our results reveal a significant diversity of phototrophic microorganisms in lakes and suggest niche partitioning of oxygenic and aerobic anoxygenic phototrophs in these systems in response to trophic status and coupled differences in light regime.


FEMS Microbiology Ecology | 2009

Viruses in subarctic lakes and their impact on benthic and pelagic bacteria

Christin Säwström; Jenny Ask; Jan Karlsson

Virus-bacterium interactions were investigated in the pelagic and benthic habitats in a set of lakes along an altitudinal gradient in the subarctic northern Sweden. Viral and bacterial abundances showed a significant variation between the lakes, with the highest benthic microbial abundances recorded in a high-altitude lake [993 m above sea level (a.s.l.)], whereas the highest pelagic microbial abundances were found in a low-altitude lake (270 m a.s.l.). In the pelagic habitat, there was also a distinct difference in microbial abundances between the summer-autumn and the winter sampling occasion. A positive relationship was noted between viruses and bacteria in both the pelagic and the benthic habitats. Visibly virus-infected bacterial cells were uncommon in the pelagic habitat and undetectable in the benthos. Both lytic and lysogenic pelagic viral production rates were undetectable or low; thus, a possible explanation for the relative high viral abundances found in the water column could be an allochthonous input of viruses or release of sediment-derived viruses. Overall, our results provide novel information about the relevance of viruses in the subarctic region and indicate that viruses play only a minor role in the nutrient and carbon cycling in the microbial communities of subarctic lakes.


Environmental Microbiology Reports | 2012

Environmental influences on virus–host interactions in an Australian subtropical reservoir

Christin Säwström; Peter Pollard

Viral and prokaryotic interactions in freshwaters have been investigated worldwide but there are few temporal studies in the tropics and none in the sub-tropics. In this 10-month study, we examined temporal changes in virus-host interactions and viral life cycles (lytic versus lysogenic) in relation to the prevailing environmental conditions in a subtropical water reservoir (Wivenhoe) in southeast Queensland, Australia. Heterotrophic prokaryotes and picocyanobacteria were positively correlated with concentrations of viruses throughout the study, indicating the presence of both bacteriophages and cyanophages in the reservoir. The percentage of heterotrophic prokaryotes and picocyanobacteria containing intracellular viruses (FVIC) ranged between 0.2% and 2.4% and did not vary significantly over the 10-month study, whereas lysogenic heterotrophic prokaryotes were only detected in the drier months of June and July. Spearman rank correlation analysis showed that the oxidative-reduction potential (ORP) of the water reservoir influenced the concentrations of viruses, heterotrophic prokaryotes and picocyanobacteria significantly, with low ORP offering a favourable environment for these components. There was a negative relationship between FVIC and rainfall suggesting the associated run-off altered virus-host interactions. Overall, our study provides novel information and inferences on how virus-host interactions in subtropical freshwaters might respond to changes in precipitation predicted to occur with global climate change.


Marine and Freshwater Research | 2014

Lysogenic infection in sub-tropical freshwater cyanobacteria cultures and natural blooms

Lisa Steenhauer; Peter Pollard; Corina P. D. Brussaard; Christin Säwström

Lysogeny has been reported for a few freshwater cyanobacteria cultures, but it is unknown how prevalent it is in freshwater cyanobacteria in situ. Here we tested for lysogeny in (a) cultures of eight Australian species of subtropical freshwater cyanobacteria; (b) seven strains of one species: Cylindrospermopsis raciborskii; and (c) six cyanobacterial blooms in drinking water reservoirs in South East Queensland, Australia. Lysogenic infection in the cyanobacteria was induced through mitomycin C addition. By measuring the decline in host cell numbers and the concomitant increase in cyanophages over the course of the experiment, we observed lysogenic infection in five of the eight species of cyanobacteria (i.e. Nodularia spumigena, Anabaena circinalis, Anabaenopsis arnoldii, Aphanizomenon ovalisporum, Microcystis botrys, Microcystis aeruginosa, C. raciborskii and Anabaena spp., and in four of the seven strains of C. raciborskii) but only in two of the six natural cyanobacteria blooms. Lysogeny dominated laboratory culture strains whereas in natural blooms of cyanobacteria few species were lysogenic (i.e. not mitomycin C inducible). Thus, lysogenic laboratory cultures may not necessarily reflect the genetics nor the physiology of a natural cyanobacterial population, and more information on both forms is needed to understand better how cyanobacteria behave and exist in their natural habitat.


Polar Biology | 2002

The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N)

Christin Säwström; Paul Mumford; William A. Marshall; Andy Hodson; Johanna Laybourn-Parry


Environmental Microbiology | 2007

High viral infection rates in Antarctic and Arctic bacterioplankton

Christin Säwström; Wilhelm Granéli; Johanna Laybourn-Parry; Alexandre M. Anesio


Polar Biology | 2007

Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments

Christin Säwström; Johanna Laybourn-Parry; Wilhelm Granéli; Alexandre M. Anesio


Oikos | 2009

Benthic algae support zooplankton growth during winter in a clear-water lake

Jan Karlsson; Christin Säwström

Collaboration


Dive into the Christin Säwström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge