Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Beeton is active.

Publication


Featured researches published by Christine Beeton.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases.

Christine Beeton; Heike Wulff; Nathan E. Standifer; Philippe Azam; Katherine M. Mullen; Michael W. Pennington; Aaron Kolski-Andreaco; Eric Wei; Alexandra Grino; Debra Counts; Ping H. Wang; Christine J. LeeHealey; Brian S. Andrews; Ananthakrishnan Sankaranarayanan; Daniel Homerick; Werner W. Roeck; Jamshid Tehranzadeh; Kimber L. Stanhope; Pavel I. Zimin; Peter J. Havel; Stephen M. Griffey; Hans Guenther Knaus; Gerald T. Nepom; George A. Gutman; Peter A. Calabresi; K. George Chandy

Autoreactive memory T lymphocytes are implicated in the pathogenesis of autoimmune diseases. Here we demonstrate that disease-associated autoreactive T cells from patients with type-1 diabetes mellitus or rheumatoid arthritis (RA) are mainly CD4+CCR7−CD45RA− effector memory T cells (TEM cells) with elevated Kv1.3 potassium channel expression. In contrast, T cells with other antigen specificities from these patients, or autoreactive T cells from healthy individuals and disease controls, express low levels of Kv1.3 and are predominantly naïve or central-memory (TCM) cells. In TEM cells, Kv1.3 traffics to the immunological synapse during antigen presentation where it colocalizes with Kvβ2, SAP97, ZIP, p56lck, and CD4. Although Kv1.3 inhibitors [ShK(L5)-amide (SL5) and PAP1] do not prevent immunological synapse formation, they suppress Ca2+-signaling, cytokine production, and proliferation of autoantigen-specific TEM cells at pharmacologically relevant concentrations while sparing other classes of T cells. Kv1.3 inhibitors ameliorate pristane-induced arthritis in rats and reduce the incidence of experimental autoimmune diabetes in diabetes-prone (DP-BB/W) rats. Repeated dosing with Kv1.3 inhibitors in rats has not revealed systemic toxicity. Further development of Kv1.3 blockers for autoimmune disease therapy is warranted.


Journal of Clinical Investigation | 2003

The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS

Heike Wulff; Peter A. Calabresi; Rameeza Allie; Sung Yun; Michael W. Pennington; Christine Beeton; K. George Chandy

Through a combination of fluorescence microscopy and patch-clamp analysis we have identified a striking alteration in K(+) channel expression in terminally differentiated human CCR7(-)CD45RA(-) effector memory T lymphocytes (T(EM)). Following activation, T(EM) cells expressed significantly higher levels of the voltage-gated K(+) channel Kv1.3 and lower levels of the calcium-activated K(+) channel IKCa1 than naive and central memory T cells (T(CM)). Upon repeated in vitro antigenic stimulation, naive cells differentiated into Kv1.3(high)IKCa1(low) T(EM) cells, and the potent Kv1.3-blocking sea anemone Stichodactyla helianthus peptide (ShK) suppressed proliferation of T(EM) cells without affecting naive or T(CM) lymphocytes. Thus, the Kv1.3(high)IKCa1(low) phenotype is a functional marker of activated T(EM) lymphocytes. Activated myelin-reactive T cells from patients with MS exhibited the Kv1.3(high)IKCa1(low) T(EM) phenotype, suggesting that they have undergone repeated stimulation during the course of disease; these cells may contribute to disease pathogenesis due to their ability to home to inflamed tissues and exhibit immediate effector function. The Kv1.3(high)IKCa1(low) phenotype was not seen in glutamic acid decarboxylase, insulin-peptide or ovalbumin-specific and mitogen-activated T cells from MS patients, or in myelin-specific T cells from healthy controls. Selective targeting of Kv1.3 in T(EM) cells may therefore hold therapeutic promise for MS and other T cell-mediated autoimmune diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis

Christine Beeton; Heike Wulff; Jocelyne Barbaria; Olivier Clot-Faybesse; Michael W. Pennington; Dominique Bernard; Michael D. Cahalan; K. George Chandy; Evelyne Beraud

Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+ T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype (“chronically activated”) with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca2+-activated K+ channels (≈50–120 per cell). In contrast, resting T cells displayed 0–10 Kv1.3 and 10–20 IKCa1 channels per cell (“quiescent” phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell (“acutely activated” phenotype). Consistent with their channel phenotype, [3H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap22) engineered to be highly specific for Kv1.3, but not by a selective IKCa1 blocker (TRAM-34). The combination of ShK-Dap22 and TRAM-34 enhanced the suppression of MBP-stimulated T cell proliferation. Based on these in vitro results, we assessed the efficacy of K+ channel blockers in AT-EAE. Specific and simultaneous blockade of the T cell channels by ShK or by a combination of ShK-Dap22 plus TRAM-34 prevented lethal AT-EAE. Blockade of Kv1.3 alone with ShK-Dap22, but not of IKCa1 with TRAM-34, was also effective. When administered after the onset of symptoms, ShK or the combination of ShK-Dap22 plus TRAM-34 greatly ameliorated the clinical course of both moderate and severe AT-EAE. We conclude that selective targeting of Kv1.3, alone or with IKCa1, may provide an effective new mode of therapy for multiple sclerosis.


Journal of Immunology | 2001

Selective Blocking of Voltage-Gated K+ Channels Improves Experimental Autoimmune Encephalomyelitis and Inhibits T Cell Activation

Christine Beeton; Jocelyne Barbaria; Pierre Giraud; Jérôme Devaux; Anne-Marie Benoliel; Maurice Gola; Jean Marc Sabatier; Dominique Bernard; Marcel Crest; Evelyne Beraud

Kaliotoxin (KTX), a blocker of voltage-gated potassium channels (Kv), is highly selective for Kv1.1 and Kv1.3. First, Kv1.3 is expressed by T lymphocytes. Blockers of Kv1.3 inhibit T lymphocyte activation. Second, Kv1.1 is found in paranodal regions of axons in the central nervous system. Kv blockers improve the impaired neuronal conduction of demyelinated axons in vitro and potentiate the synaptic transmission. Therefore, we investigated the therapeutic properties of KTX via its immunosuppressive and symptomatic neurological effects, using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. The T line cells used to induce adoptive EAE were myelin basic protein (MBP)-specific, constitutively contained mRNA for Kv1.3. and expressed Kv1.3. These channels were shown to be blocked by KTX. Activation is a crucial step for MBP T cells to become encephalitogenic. The addition of KTX during Ag-T cell activation led to a great reduction in the MBP T cell proliferative response, in the production of IL-2 and TNF, and in Ca2+ influx. Furthermore, the addition of KTX during T cell activation in vitro led a decreased encephalitogenicity of MBP T cells. Moreover, KTX injected into Lewis rats impaired T cell function such as the delayed-type hypersensitivity. Lastly, the administration of this blocker of neuronal and lymphocyte channels to Lewis rats improved the symptoms of EAE. We conclude that KTX is a potent immunosuppressive agent with beneficial effects on the neurological symptoms of EAE.


Immunity | 2008

Imaging of Effector Memory T Cells during a Delayed-Type Hypersensitivity Reaction and Suppression by Kv1.3 Channel Block

Melanie P. Matheu; Christine Beeton; Adriana Garcia; Victor Chi; Srikant Rangaraju; Olga Safrina; Kevin Monaghan; Marc I. Uemura; Dan Li; Sukumar Pal; Luis M. de la Maza; Edwin S. Monuki; Alexander Flügel; Michael W. Pennington; Ian Parker; K. George Chandy; Michael D. Cahalan

Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24 hr, enlarged Tem cells were highly motile along collagen fibers and continued to migrate rapidly for 18 hr. Tem cells rely on voltage-gated Kv1.3 potassium channels to regulate calcium signaling. ShK-186, a specific Kv1.3 blocker, inhibited DTH and suppressed Tem cell enlargement and motility in inflamed tissue but had no effect on homing to or motility in lymph nodes of naive and central memory T (Tcm) cells. ShK-186 effectively treated disease in a rat model of multiple sclerosis. These results demonstrate a requirement for Kv1.3 channels in Tem cells during an inflammatory immune response in peripheral tissues. Targeting Kv1.3 allows for effector memory responses to be suppressed while central memory responses remain intact.


Toxicon | 2012

Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases.

Victor Chi; Michael W. Pennington; Raymond S. Norton; Eric J. Tarcha; Luz M. Londono; Brian Sims-Fahey; Sanjeev Kumar Upadhyay; Jonathan Robert Todd Lakey; Shawn P. Iadonato; Heike Wulff; Christine Beeton; K. George Chandy

Electrophysiological and pharmacological studies coupled with molecular identification have revealed a unique network of ion channels--Kv1.3, KCa3.1, CRAC (Orai1 + Stim1), TRPM7, Cl(swell)--in lymphocytes that initiates and maintains the calcium signaling cascade required for activation. The expression pattern of these channels changes during lymphocyte activation and differentiation, allowing the functional network to adapt during an immune response. The Kv1.3 channel is of interest because it plays a critical role in subsets of T and B lymphocytes implicated in autoimmune disorders. The ShK toxin from the sea anemone Stichodactyla helianthus is a potent blocker of Kv1.3. ShK-186, a synthetic analog of ShK, is being developed as a therapeutic for autoimmune diseases, and is scheduled to begin first-in-man phase-1 trials in 2011. This review describes the journey that has led to the development of ShK-186.


Molecular Pharmacology | 2009

Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes.

Michael W. Pennington; Christine Beeton; Charles A. Galea; Brian J. Smith; Victor Chi; K. P. Monaghan; Adriana Garcia; Srikant Rangaraju; A. Giuffrida; D. Plank; George Crossley; Daniel Nugent; Ilya Khaytin; Yann Lefievre; I. Peshenko; C. Dixon; Satendra Chauhan; A. Orzel; Taeko Inoue; Xueyou Hu; R. V. Moore; Raymond S. Norton; K. G. Chandy

Kv1.3 potassium channels maintain the membrane potential of effector memory (TEM) T cells that are important mediators of multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5), containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin, is a potent and selective blocker of these channels. However, a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability, ShK-192, contains a nonhydrolyzable phosphotyrosine surrogate, a methionine isostere, and a C-terminal amide. ShK-192 shows the same overall fold as ShK, and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys411 of the channel. ShK-192 blocks Kv1.3 with an IC50 of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 μg/kg, ∼100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24, 48, and 72 h after the injection. ShK-192 effectively inhibits the proliferation of TEM cells and suppresses delayed type hypersensitivity when administered at 10 or 100 μg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by TEM cells.


The Neuroscientist | 2005

Potassium Channels, Memory T Cells, and Multiple Sclerosis:

Christine Beeton; K. George Chandy

Multiple sclerosis is a chronic inflammatory autoimmune disease of the central nervous system characterized by demyelination and axonal damage that result in disabling neurological deficits. Here the authors explain the rationale for the use of inhibitors of the Kv1.3 K+ channel in immune cells as a therapy for multiple sclerosis and other autoimmune disorders.


Nature Communications | 2011

Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis.

Haik Mkhikian; Ani Grigorian; Carey F. Li; Hung-Lin Chen; Barbara L. Newton; Raymond W. Zhou; Christine Beeton; Sevan Torossian; Gevork Grikor Tatarian; Sung-Uk Lee; Ken S. Lau; Erin Walker; Katherine A. Siminovitch; K. George Chandy; Zhaoxia Yu; James W. Dennis; Michael Demetriou

How environmental factors combine with genetic risk at the molecular level to promote complex trait diseases such as multiple sclerosis (MS) is largely unknown. In mice, N-glycan branching by the Golgi enzymes Mgat1 and/or Mgat5 prevents T cell hyperactivity, cytotoxic T-lymphocyte antigen 4 (CTLA-4) endocytosis, spontaneous inflammatory demyelination and neurodegeneration, the latter pathologies characteristic of MS. Here we show that MS risk modulators converge to alter N-glycosylation and/or CTLA-4 surface retention conditional on metabolism and vitamin D3, including genetic variants in interleukin-7 receptor-α (IL7RA*C), interleukin-2 receptor-α (IL2RA*T), MGAT1 (IVAVT−T) and CTLA-4 (Thr17Ala). Downregulation of Mgat1 by IL7RA*C and IL2RA*T is opposed by MGAT1 (IVAVT−T) and vitamin D3, optimizing branching and mitigating MS risk when combined with enhanced CTLA-4 N-glycosylation by CTLA-4 Thr17. Our data suggest a molecular mechanism in MS whereby multiple environmental and genetic inputs lead to dysregulation of a final common pathway, namely N-glycosylation.


Journal of Visualized Experiments | 2010

Detection of Functional Matrix Metalloproteinases by Zymography

Xueyou Hu; Christine Beeton

Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease1-6. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle7-10. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel11. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary structure, necessary for enzymatic activity. The gel is then placed in a developing buffer designed to allow the protease to digest its substrate. The developing buffer also contains p-aminophenylmercuric acetate (APMA) to activate the non-proteolytic pro-MMPs into active MMPs. The next step consists of staining the substrate (gelatin in our example). After washing the excess dye off the gel, areas of protease digestion appear as clear bands. The clearer the band, the more concentrated the protease it contains. Band staining intensity can then be determined by densitometry, using a software such as ImageJ, allowing for sample comparison.

Collaboration


Dive into the Christine Beeton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Redwan Huq

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rajeev B. Tajhya

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mark R. Tanner

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Heike Wulff

University of California

View shared research outputs
Top Co-Authors

Avatar

Xueyou Hu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Raymond S. Norton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Pércio S. Gulko

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Teresina Laragione

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge