Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark R. Tanner is active.

Publication


Featured researches published by Mark R. Tanner.


Journal of Biological Chemistry | 2014

Blocking Kv1.3 channels inhibits Th2 lymphocyte function and treats a rat model of asthma

Shyny Koshy; Redwan Huq; Mark R. Tanner; Mustafa A. Atik; Paul Porter; Fatima S. Khan; Michael W. Pennington; Nicola A. Hanania; David B. Corry; Christine Beeton

Background: CCR7− effector memory T lymphocytes are major players in lung inflammation that characterizes allergic asthma. Results: Blocking KV1.3 channels reduced the severity of an ovalbumin-induced model of asthma in rats. Conclusion: KV1.3 channels are attractive targets for immunomodulation and the treatment of allergic asthma. Significance: Selective KV1.3 channel blockers may prove beneficial in the treatment of asthma. Allergic asthma is a chronic inflammatory disease of the airways. Of the different lower airway-infiltrating immune cells that participate in asthma, T lymphocytes that produce Th2 cytokines play important roles in pathogenesis. These T cells are mainly fully differentiated CCR7− effector memory T (TEM) cells. Targeting TEM cells without affecting CCR7+ naïve and central memory (TCM) cells has the potential of treating TEM-mediated diseases, such as asthma, without inducing generalized immunosuppression. The voltage-gated KV1.3 potassium channel is a target for preferential inhibition of TEM cells. Here, we investigated the effects of ShK-186, a selective KV1.3 channel blocker, for the treatment of asthma. A significant proportion of T lymphocytes in the lower airways of subjects with asthma expressed high levels of KV1.3 channels. ShK-186 inhibited the allergen-induced activation of peripheral blood T cells from those subjects. Immunization of F344 rats against ovalbumin followed by intranasal challenges with ovalbumin induced airway hyper-reactivity, which was reduced by the administration of ShK-186. ShK-186 also reduced total immune infiltrates in the bronchoalveolar lavage and number of infiltrating lymphocytes, eosinophils, and neutrophils assessed by differential counts. Rats with the ovalbumin-induced model of asthma had elevated levels of the Th2 cytokines IL-4, IL-5, and IL-13 measured by ELISA in their bronchoalveolar lavage fluids. ShK-186 administration reduced levels of IL-4 and IL-5 and induced an increase in the production of IL-10. Finally, ShK-186 inhibited the proliferation of lung-infiltrating ovalbumin-specific T cells. Our results suggest that KV1.3 channels represent effective targets for the treatment of allergic asthma.


Scientific Reports | 2015

A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases

Harunur Rashid; Redwan Huq; Mark R. Tanner; Sandeep Chhabra; Keith K. Khoo; Rosendo Estrada; Vikas Dhawan; Satendra Chauhan; Michael W. Pennington; Christine Beeton; Serdar Kuyucak; Raymond S. Norton

HsTX1 toxin, from the scorpion Heterometrus spinnifer, is a 34-residue, C-terminally amidated peptide cross-linked by four disulfide bridges. Here we describe new HsTX1 analogues with an Ala, Phe, Val or Abu substitution at position 14. Complexes of HsTX1 with the voltage-gated potassium channels Kv1.3 and Kv1.1 were created using docking and molecular dynamics simulations, then umbrella sampling simulations were performed to construct the potential of mean force (PMF) of the ligand and calculate the corresponding binding free energy for the most stable configuration. The PMF method predicted that the R14A mutation in HsTX1 would yield a > 2 kcal/mol gain for the Kv1.3/Kv1.1 selectivity free energy relative to the wild-type peptide. Functional assays confirmed the predicted selectivity gain for HsTX1[R14A] and HsTX1[R14Abu], with an affinity for Kv1.3 in the low picomolar range and a selectivity of more than 2,000-fold for Kv1.3 over Kv1.1. This remarkable potency and selectivity for Kv1.3, which is significantly up-regulated in activated effector memory cells in humans, suggest that these analogues represent valuable leads in the development of therapeutics for autoimmune diseases.


The FASEB Journal | 2014

Kv1.3 channel-blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases

Sandeep Chhabra; Shihchieh Jeff Chang; Hai M. Nguyen; Redwan Huq; Mark R. Tanner; Luz M. Londono; Rosendo Estrada; Vikas Dhawan; Satendra Chauhan; Sanjeev Kumar Upadhyay; Mariel Gindin; Peter J. Hotez; Jesus G. Valenzuela; Biswaranjan Mohanty; James D. Swarbrick; Heike Wulff; Shawn P. Iadonato; George A. Gutman; Christine Beeton; Michael W. Pennington; Raymond S. Norton; George K. Chandy

The voltage‐gated potassium (Kv) 1.3 channel is widely regarded as a therapeutic target for immunomodulation in autoimmune diseases. ShK‐186, a selective inhibitor of Kv1.3 channels, ameliorates autoimmune diseases in rodent models, and human phase 1 trials of this agent in healthy volunteers have been completed. In this study, we identified and characterized a large family of Stichodactyla helianthus toxin (ShK)‐related peptides in parasitic worms. Based on phylogenetic analysis, 2 worm peptides were selected for study: AcK1, a 51‐residue peptide expressed in the anterior secretory glands of the dog‐infecting hookworm Ancylostoma caninum and the human‐infecting hookworm Ancylostoma ceylanicum, and BmK1, the C‐terminal domain of a metalloprotease from the filarial worm Brugia malayi. These peptides in solution adopt helical structures closely resembling that of ShK. At doses in the nanomolar‐micromolar range, they block native Kv1.3 in human T cells and cloned Kv1.3 stably expressed in L929 mouse fibroblasts. They preferentially suppress the proliferation of rat CCR7‐ effector memory T cells without affecting naive and central memory subsets and inhibit the delayed‐type hypersensitivity (DTH) response caused by skin‐homing effector memory T cells in rats. Further, they suppress IFNγ production by human T lymphocytes. ShK‐related peptides in parasitic worms may contribute to the potential beneficial effects of probiotic parasitic worm therapy in human autoimmune diseases.—Chhabra, S., Chang, S. C., Nguyen, H. M., Huq, R., Tanner, M. R., Londono, L. M., Estrada, R., Dhawan, V., Chauhan, S., Upadhyay, S. K., Gindin, M., Hotez, P. J., Valenzuela, J. G., Mohanty, B., Swarbrick, J. D., Wulff, H., Iadonato, S. P., Gutman, G. A., Beeton, C., Pennington, M. W., Norton, R. S., Chandy, K. G. Kv1.3 channel‐blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB J. 28, 3952‐3964 (2014). www.fasebj.org


Clinical Immunology | 2015

The cation channel Trpv2 is a new suppressor of arthritis severity, joint damage, and synovial fibroblast invasion

Teresina Laragione; Kai F. Cheng; Mark R. Tanner; Mingzhu He; Christine Beeton; Yousef Al-Abed; Pércio S. Gulko

Little is known about the regulation of arthritis severity and joint damage in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) have a central role in joint damage and express increased levels of the cation channel Trpv2. We aimed at determining the role of Trpv2 in arthritis. Treatment with Trpv2-specific agonists decreased the in vitro invasiveness of FLS from RA patients and arthritic rats and mice. Trpv2 stimulation suppressed IL-1β-induced expression of MMP-2 and MMP-3. Trpv2 agonists, including the new and more potent LER13, significantly reduced disease severity in KRN serum- and collagen-induced arthritis, and reduced histologic joint damage, synovial inflammation, and synovial blood vessel numbers suggesting anti-angiogenic activity. In this first in vivo use of Trpv2 agonists we discovered a new central role for Trpv2 in arthritis. These new compounds have the potential to become new therapies for RA and other diseases associated with inflammation, invasion, and angiogenesis.


Arthritis & Rheumatism | 2015

KCa1.1 inhibition attenuates fibroblast-like synoviocyte invasiveness and ameliorates disease in rat models of rheumatoid arthritis.

Mark R. Tanner; Xueyou Hu; Redwan Huq; Rajeev B. Tajhya; Liang Sun; Fatima S. Khan; Teresina Laragione; Frank T. Horrigan; Pércio S. Gulko; Christine Beeton

Fibroblast‐like synoviocytes (FLS) participate in joint inflammation and damage in rheumatoid arthritis (RA) and its animal models. The purpose of this study was to define the importance of KCa1.1 (BK, Maxi‐K, Slo1, KCNMA1) channel expression and function in FLS and to establish these channels as potential new targets for RA therapy.


Journal of Virology | 2014

Structural Plasticity of the Coiled-Coil Domain of Rotavirus NSP4

Narayan P. Sastri; M. Viskovska; Joseph M. Hyser; Mark R. Tanner; L. B. Horton; Banumathi Sankaran; B. V. V. Prasad; Mary K. Estes

ABSTRACT Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca2+ homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca2+ at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca2+ despite the residues (E120 and Q123) that coordinate Ca2+ binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca2+ binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca2+ or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca2+ at neutral pH and forms a tetramer, it does not bind Ca2+ at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca2+ binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca2+ may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca2+-bound tetrameric state and a Ca2+-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca2+-bound tetramer to a Ca2+-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.


Clinical Immunology | 2017

Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog

Mark R. Tanner; Rajeev B. Tajhya; Redwan Huq; Elizabeth J. Gehrmann; Kathia E. Rodarte; Mustafa A. Atik; Raymond S. Norton; Michael W. Pennington; Christine Beeton

Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7- TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7- TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.


Scientific Reports | 2016

Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation

Redwan Huq; Errol L. G. Samuel; William K. A. Sikkema; Lizanne G. Nilewski; Thomas Lee; Mark R. Tanner; Fatima S. Khan; Paul Porter; Rajeev B. Tajhya; Rutvik S. Patel; Taeko Inoue; Robia G. Pautler; David B. Corry; James M. Tour; Christine Beeton

Autoimmune diseases mediated by a type of white blood cell—T lymphocytes—are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants. Furthermore, the affinity of carbon nanoparticles for specific cell types represents an emerging tactic for cell-targeted therapy. Here, we report that nontoxic poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), known scavengers of the ROS superoxide (O2•−) and hydroxyl radical, are preferentially internalized by T lymphocytes over other splenic immune cells. We use this selectivity to inhibit T cell activation without affecting major functions of macrophages, antigen-presenting cells that are crucial for T cell activation. We also demonstrate the in vivo effectiveness of PEG-HCCs in reducing T lymphocyte-mediated inflammation in delayed-type hypersensitivity and in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results suggest the preferential targeting of PEG-HCCs to T lymphocytes as a novel approach for T lymphocyte immunomodulation in autoimmune diseases without affecting other immune cells.


Journal of Neurotrauma | 2017

Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury

Ryan D. Fortune; Raymond J. Grill; Christine Beeton; Mark R. Tanner; Redwan Huq; David S. Loose

Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patients life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful.


Cell Death and Disease | 2016

Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts

Rajeev B. Tajhya; Xueyou Hu; Mark R. Tanner; Redwan Huq; Natee Kongchan; Joel R. Neilson; George G. Rodney; Frank T. Horrigan; Lubov Timchenko; Christine Beeton

Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1.

Collaboration


Dive into the Mark R. Tanner's collaboration.

Top Co-Authors

Avatar

Christine Beeton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Redwan Huq

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rajeev B. Tajhya

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pércio S. Gulko

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Teresina Laragione

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Frank T. Horrigan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xueyou Hu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatima S. Khan

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge