Teresina Laragione
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teresina Laragione.
Molecular Medicine | 2012
Teresina Laragione; Anish Shah; Pércio S. Gulko
Serum levels of vitamin D levels are commonly reduced in patients with rheumatoid arthritis (RA) and have been implicated in disease pathogenesis. We recently identified a new vitamin D receptor transcriptional signature in synovial tissues from rats with mild and nonerosive arthritis, suggesting a vitamin D-mediated protective effect. In the present study, we address the hypothesis that part of the vitamin D protective effect is mediated via interference with fibroblast-like synoviocyte (FLS) invasive properties, an in vitro cellular phenotype that correlates with radiographic and histological damage in pristane-induced arthritis and RA. FLSs derived from DA rats with pristane-induced arthritis and RA patients were studied in an in vitro model of invasion through a collagen-rich barrier (Matrigel) over a 24-h period, in the presence or absence of calcitriol, an active form of vitamin D. Matrix metalloprotease (MMP) expression levels were analyzed with zymography and quantitative real-time polymerase chain reaction, and the cytoskeleton was studied with immunofluorescense microscopy. Calcitriol significantly inhibited DA and RA FLS invasion by 54% and 53%, respectively. Calcitriol also reduced interleukin (IL)-1β-induced expression of MMP-1 by 95% in DA FLSs and by 73.5% in RA FLS. Calcitriol treatment reduced actin cytoskeleton reorganization, reduced polarized formation of lamellipodia and reduced colocalization of phosphorylated focal adhesion kinase (p-FAK) with lamellipodia, all consistent with reduced cell ability to move and invade. In conclusion, we identified a new effect of calcitriol in FLS invasion. This discovery suggests that the reduced serum levels of vitamin D and its metabolites commonly seen in RA might increase risk for FLS-mediated cartilage and bone invasion and erosions. Treatment with vitamin D or its analogs has the potential to become a helpful adjuvant aimed at preventing or reducing joint destruction.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Esilida Sula Karreci; Hao Fan; Mayuko Uehara; Albana B. Mihali; Pradeep K. Singh; Ahmed T. Kurdi; Zhabiz Solhjou; Leonardo V. Riella; Irene M. Ghobrial; Teresina Laragione; Sujit Routray; Jean Pierre Assaker; Rong Wang; George Sukenick; Lei Shi; Franck J. Barrat; Carl Nathan; Gang Lin; Jamil Azzi
Significance The potential of proteasome inhibitors to prevent transplant rejection and to treat other immune disorders is hindered by mechanism-based toxicity from inhibition of constitutive proteasomes. Here, we demonstrate that briefly, reversibly, and selectively inhibiting the immunoproteasome prolonged the survival of transplanted hearts in mice and allowed long-term survival when combined with single-dose CTLA4-Ig. Immunoproteasome inhibition noncytotoxically reduced T-cell proliferation and the numbers of effector T cells in the allograft and draining nodes while increasing T-cell expression of exhaustion markers. The immunoproteasome thus appears to play a role in suppressing induction of T-cell exhaustion. Selective inhibition of the immunoproteasome may be a potential treatment option for the management of transplant rejection. Constitutive proteasomes (c-20S) are ubiquitously expressed cellular proteases that degrade polyubiquitinated proteins and regulate cell functions. An isoform of proteasome, the immunoproteasome (i-20S), is highly expressed in human T cells, dendritic cells (DCs), and B cells, suggesting that it could be a potential target for inflammatory diseases, including those involving autoimmunity and alloimmunity. Here, we describe DPLG3, a rationally designed, noncovalent inhibitor of the immunoproteasome chymotryptic subunit β5i that has thousands-fold selectivity over constitutive β5c. DPLG3 suppressed cytokine release from blood mononuclear cells and the activation of DCs and T cells, diminished accumulation of effector T cells, promoted expression of exhaustion and coinhibitory markers on T cells, and synergized with CTLA4-Ig to promote long-term acceptance of cardiac allografts across a major histocompatibility barrier. These findings demonstrate the potential value of using brief posttransplant immunoproteasome inhibition to entrain a long-term response favorable to allograft survival as part of an immunomodulatory regimen that is neither broadly immunosuppressive nor toxic.
Molecular Medicine | 2012
Teresina Laragione; Pércio S. Gulko
Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA.
Genetics | 2013
Xiaosen Guo; Max Brenner; Xuemei Zhang; Teresina Laragione; Shuaishuai Tai; Yanhong Li; Junjie Bu; Ye Yin; Anish Shah; Kevin Kwan; Yingrui Li; Wang Jun; Pércio S. Gulko
DA (D-blood group of Palm and Agouti, also known as Dark Agouti) and F344 (Fischer) are two inbred rat strains with differences in several phenotypes, including susceptibility to autoimmune disease models and inflammatory responses. While these strains have been extensively studied, little information is available about the DA and F344 genomes, as only the Brown Norway (BN) and spontaneously hypertensive rat strains have been sequenced to date. Here we report the sequencing of the DA and F344 genomes using next-generation Illumina paired-end read technology and the first de novo assembly of a rat genome. DA and F344 were sequenced with an average depth of 32-fold, covered 98.9% of the BN reference genome, and included 97.97% of known rat ESTs. New sequences could be assigned to 59 million positions with previously unknown data in the BN reference genome. Differences between DA, F344, and BN included 19 million positions in novel scaffolds, 4.09 million single nucleotide polymorphisms (SNPs) (including 1.37 million new SNPs), 458,224 short insertions and deletions, and 58,174 structural variants. Genetic differences between DA, F344, and BN, including high-impact SNPs and short insertions and deletions affecting >2500 genes, are likely to account for most of the phenotypic variation between these strains. The new DA and F344 genome sequencing data should facilitate gene discovery efforts in rat models of human disease.
Genes and Immunity | 2012
Emma Jenkins; Max Brenner; Teresina Laragione; Pércio S. Gulko
We have previously identified Cia10 as an arthritis severity and articular damage quantitative trait locus. In this study, we used Illumina RatRef-12 microarrays to analyze the expression of 21 922 genes in synovial tissues from arthritis-susceptible DA and arthritis-protected DA.ACI(Cia10) congenics with pristane-induced arthritis. 310 genes had significantly different expression. The genes upregulated in DA, and reciprocally downregulated in DA.ACI(Cia10) included IL-11, Ccl12 and Cxcl10, as well as genes implicated in Th17 responses such as IL-17A, IL-6, Ccr6, Cxcr3 and Stat4. Suppressors of immune responses Tgfb and Vdr, and inhibitors of oxidative stress were upregulated in congenics. There was an over-representation of genes implicated in cancer and cancer-related phenotypes such as tumor growth and invasion among the differentially expressed genes. Cancer-favoring genes like Ctsd, Ikbke, and Kras were expressed in increased levels in DA, whereas inhibitors of cancer phenotypes such as Timp2, Reck and Tgfbr3 were increased in DA.ACI(Cia10). These results suggest that Cia10 may control arthritis severity, synovial hyperplasia and joint damage via the regulation of the expression of cancer-related genes, inflammatory mediators and Th17-related markers. These new findings have the potential to generate new targets for therapies aimed at reducing arthritis severity and joint damage in rheumatoid arthritis.
Annals of the Rheumatic Diseases | 2007
Max Brenner; Teresina Laragione; Adriana Mello; Pércio S. Gulko
Background: A genomewide scan in a DA×ACI F2 intercross studied for collagen-induced arthritis (CIA) identified the severity quantitative trait locus Cia25 on rat chromosome 12. Cia25 co-localises with loci regulating several forms of autoimmune diseases in rats, mice and humans, suggesting a common gene. Objective: To characterise the effects of Cia25 on severity of arthritis in congenic rats. Methods: DA.ACI(Cia25) congenic rats were constructed according to a genotype-guided strategy, and tested for pristane-induced arthritis (PIA) and CIA, induced with rat type II collagen (CII). A well-established scoring system previously shown to correlate with histological damage, including cartilage and bone erosions, synovial hyperplasia and synovial inflammation, was used. Results: The introgression of ACI alleles at Cia25 into DA background, as in DA.ACI(Cia25) rats, was enough to significantly reduce arthritis severity by 60% in PIA and by 40% in CIA, both in males and females compared with DA rats of the same sex. Levels of IgG anti-CII in male DA.ACI(Cia25) rats were 83% lower than in male DA. Levels of anti-CII in females were not affected by the congenic interval. Conclusions:Cia25 contains a gene that regulates disease severity in two distinct models of autoimmune arthritis. Although both genders were protected in arthritis studies, only male congenic rats had a dramatic reduction in levels of anti-CII, suggesting the possibility of a second arthritis gene in this interval that operates via the regulation of autoantibodies in a sex-specific manner. The identification of the gene(s) accounting for Cia25 is expected to generate novel prognostic biomarkers and targets for therapy.
Clinical Immunology | 2015
Teresina Laragione; Kai F. Cheng; Mark R. Tanner; Mingzhu He; Christine Beeton; Yousef Al-Abed; Pércio S. Gulko
Little is known about the regulation of arthritis severity and joint damage in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) have a central role in joint damage and express increased levels of the cation channel Trpv2. We aimed at determining the role of Trpv2 in arthritis. Treatment with Trpv2-specific agonists decreased the in vitro invasiveness of FLS from RA patients and arthritic rats and mice. Trpv2 stimulation suppressed IL-1β-induced expression of MMP-2 and MMP-3. Trpv2 agonists, including the new and more potent LER13, significantly reduced disease severity in KRN serum- and collagen-induced arthritis, and reduced histologic joint damage, synovial inflammation, and synovial blood vessel numbers suggesting anti-angiogenic activity. In this first in vivo use of Trpv2 agonists we discovered a new central role for Trpv2 in arthritis. These new compounds have the potential to become new therapies for RA and other diseases associated with inflammation, invasion, and angiogenesis.
Arthritis & Rheumatism | 2015
Mark R. Tanner; Xueyou Hu; Redwan Huq; Rajeev B. Tajhya; Liang Sun; Fatima S. Khan; Teresina Laragione; Frank T. Horrigan; Pércio S. Gulko; Christine Beeton
Fibroblast‐like synoviocytes (FLS) participate in joint inflammation and damage in rheumatoid arthritis (RA) and its animal models. The purpose of this study was to define the importance of KCa1.1 (BK, Maxi‐K, Slo1, KCNMA1) channel expression and function in FLS and to establish these channels as potential new targets for RA therapy.
Molecular Medicine | 2011
Yinzhong Zhang; Xinchun Lin; Kiyokazu Koga; Koichiro Takahashi; Helena M. Linge; Adriana Mello; Teresina Laragione; Pércio S. Gulko; Edmund J. Miller
Pulmonary infection is a major cause of mortality and morbidity, and the magnitude of the lung inflammatory response correlates with patient survival. Previously, we have shown that neutrophil migration into joints is regulated by arthritis severity quantitative trait loci (QTLs). However, it is unclear whether these QTLs contribute to the regulation of lung inflammation in pneumonias. Therefore, to more clearly define the factors regulating acute inflammatory responses in the lung, we examined two inbred rat strains, DA and F344, that differ in these QTLs and their susceptibility to joint inflammation. Staphylococcal cell wall components lipoteichoic acid (LTA) and peptidoglycan (PGN), administered intratracheally, significantly increased the numbers of neutrophils retrieved in the bronchoalveolar lavage fluid (BALF). F344 had approximately 10-fold more neutrophils in the BALF compared with DA (P < 0.001) and higher BALF concentrations of total protein, tumor necrosis factor-α and macrophage inflammatory protein 2. LTA/PGN administration in DAxF344 congenic strains (Cia3d, Cia4, Cia5a, and Cia6) resulted in inflammation similar to that in DA, demonstrating that the genes responsible for the differences in pulmonary inflammation are not contained within the chromosomal intervals carried by these congenic strains. Alveolar macrophages (AMs) isolated from naïve F344 stimulated in vitro with LTA/PGN produced significantly higher levels of keratinocyte-derived chemokine and macrophage inflammatory protein 2 than alveolar macrophages from DA rats. The differences were related to differential mitogen-activated protein kinase phosphorylation. We conclude that the factors contributing to inflammation can be site and challenge dependent. A better understanding of site-specific inflammation may lead to more effective treatment of acute lung inflammation and injury.
Genes and Immunity | 2007
Teresina Laragione; Max Brenner; N C Yarlett; A Mello; Edmund J. Miller; Christine N. Metz; Barbara Sherry; Pércio S. Gulko
Neutrophils are required for the development of arthritis in rodents, and are the predominant cell in the synovial fluid of active rheumatoid arthritis. We hypothesized that neutrophil migration into the inflammed joint is genetically regulated. In addition, this genetic regulation would be accounted for by one of the arthritis loci that we have previously identified in an intercross between arthritis-susceptible DA and arthritis-resistant ACI rats studied for collagen-induced arthritis. We used the synovial-like air pouch model injected with carrageenan, and tested DA, ACI, and four congenic strains. ACI exudates had a significantly lower number of neutrophils compared with DA. Transfer of DA alleles at Cia7 into the ACI background, as in ACI.DA(Cia7) congenics, was enough to increase exudate neutrophil numbers to levels identical to DA, and this locus accounted for the difference between parental strains. None of the other congenic intervals explained the differences in exudate neutrophil counts. In conclusion, we have identified a novel function for Cia7, and determined that it regulates neutrophil migration into a synovial-like inflammatory site. Our data revealed no intrinsic defect in neutrophil responses to chemotactic agents, and suggest that Cia7 regulates an as yet unidentified factor central to neutrophil recruitment into inflammed tissues.