Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine J. Weydert is active.

Publication


Featured researches published by Christine J. Weydert.


Nature Protocols | 2010

Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue

Christine J. Weydert; Joseph J. Cullen

Cells contain a large number of antioxidants to prevent or repair the damage caused by reactive oxygen species, as well as to regulate redox-sensitive signaling pathways. General protocols are described to measure the antioxidant enzyme activity of superoxide dismutase (SOD), catalase and glutathione peroxidase. The SODs convert superoxide radical into hydrogen peroxide and molecular oxygen, whereas the catalase and peroxidases convert hydrogen peroxide into water. In this way, two toxic species, superoxide radical and hydrogen peroxide, are converted to the harmless product water. Western blots, activity gels and activity assays are various methods used to determine protein and activity in both cells and tissue depending on the amount of protein required for each assay. Other techniques including immunohistochemistry and immunogold can further evaluate the levels of the various antioxidant enzymes in tissues and cells. In general, these assays require 24–48 h to complete.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Deficiency of Glutathione Peroxidase-1 Sensitizes Hyperhomocysteinemic Mice to Endothelial Dysfunction

Sanjana Dayal; Kara L. Brown; Christine J. Weydert; Larry W. Oberley; Erland Arning; Teodoro Bottiglieri; Frank M. Faraci; Steven R. Lentz

Objective—We tested the hypothesis that deficiency of cellular glutathione peroxidase (GPx-1) enhances susceptibility to endothelial dysfunction in mice with moderate hyperhomocysteinemia. Methods and Results—Mice that were wild type (Gpx1+/+), heterozygous (Gpx1+/−), or homozygous (Gpx1−/−) for the mutated Gpx1 allele were fed a control diet or a high-methionine diet for 17 weeks. Plasma total homocysteine was elevated in mice on the high-methionine diet compared with mice on the control diet (23±3 versus 6±0.3 &mgr;mol/L, respectively;P <0.001) and was not influenced by Gpx1 genotype. In mice fed the control diet, maximal relaxation of the aorta in response to the endothelium-dependent dilator acetylcholine (10−5 mol/L) was similar in Gpx1+/+, Gpx1+/−, and Gpx1−/− mice, but relaxation to lower concentrations of acetylcholine was selectively impaired in Gpx1−/− mice (P <0.05 versus Gpx1+/+ mice). In mice fed the high-methionine diet, relaxation to low and high concentrations of acetylcholine was impaired in Gpx1−/− mice (maximal relaxation 73±6% in Gpx1−/− mice versus 90±2% in Gpx1+/+ mice, P <0.05). No differences in vasorelaxation to nitroprusside or papaverine were observed between Gpx1+/+ and Gpx1−/− mice fed either diet. Dihydroethidium fluorescence, a marker of superoxide, was elevated in Gpx1−/− mice fed the high-methionine diet (P <0.05 versus Gpx1+/+ mice fed the control diet). Conclusions—These findings demonstrate that deficiency of GPx-1 exacerbates endothelial dysfunction in hyperhomocysteinemic mice and provide support for the hypothesis that hyperhomocysteinemia contributes to endothelial dysfunction through a peroxide-dependent oxidative mechanism.


Oncogene | 2005

Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1|[alpha]| and vascular endothelial growth factor

Min Wang; Jeanie S Kirk; Sujatha Venkataraman; Frederick E. Domann; Hannah J. Zhang; Freya Q. Schafer; Shawn W. Flanagan; Christine J. Weydert; Douglas R. Spitz; Garry R. Buettner; Larry W. Oberley

Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that governs cellular responses to reduced O2 availability by mediating crucial homeostatic processes. HIF-1 is composed of an HIF-1α subunit and an HIF-1β subunit. HIF-1α is degraded following enzyme-dependent hydroxylation of prolines of HIF-1α in the presence of molecular oxygen, Fe2+, α-ketoglutarate, and ascorbate. These cofactors contribute to the redox environment of cells. The antioxidant enzyme manganese superoxide dismutase (MnSOD) also modulates the cellular redox environment. Here we show that MnSOD suppressed hypoxic accumulation of HIF-1α protein in human breast carcinoma MCF-7 cells. This suppression was biphasic depending on MnSOD activity. At low levels of MnSOD activity, HIF-1α protein accumulated under hypoxic conditions. At moderate levels of MnSOD activity (two- to six-fold increase compared to parent cells), these accumulations were blocked. However, at higher levels of MnSOD activity (>6-fold increase), accumulation of HIF-1α protein was again observed. This biphasic modulation was observed under both 1 and 4% O2. Coexpression of mitochondrial hydrogen peroxide-removing proteins prevented the accumulation of HIF-1α protein in cells with high levels of MnSOD; this effect demonstrates that the restabilization of HIF-1α observed in high MnSOD overexpressors is probably due to hydrogen peroxide, most likely produced from MnSOD. Hypoxic induction of vascular endothelial growth factor (VEGF) protein was also suppressed by elevated MnSOD activity and its levels reflected HIF-1α protein levels. These observations demonstrated that HIF-1α accumulation and VEGF expression could be modulated by the antioxidant enzyme MnSOD.


Journal of Biological Chemistry | 2009

Loss of α-Dystroglycan Laminin Binding in Epithelium-derived Cancers Is Caused by Silencing of LARGE

Daniel Beltrán-Valero de Bernabé; Kei-ichiro Inamori; Takako Yoshida-Moriguchi; Christine J. Weydert; Hollie A. Harper; Tobias Willer; Michael D. Henry; Kevin P. Campbell

The interaction between epithelial cells and the extracellular matrix is crucial for tissue architecture and function and is compromised during cancer progression. Dystroglycan is a membrane receptor that mediates interactions between cells and basement membranes in various epithelia. In many epithelium-derived cancers, β-dystroglycan is expressed, but α-dystroglycan is not detected. Here we report that α-dystroglycan is correctly expressed and trafficked to the cell membrane but lacks laminin binding as a result of the silencing of the like-acetylglucosaminyltransferase (LARGE) gene in a cohort of highly metastatic epithelial cell lines derived from breast, cervical, and lung cancers. Exogenous expression of LARGE in these cancer cells restores the normal glycosylation and laminin binding of α-dystroglycan, leading to enhanced cell adhesion and reduced cell migration in vitro. Our findings demonstrate that LARGE repression is responsible for the defects in dystroglycan-mediated cell adhesion that are observed in epithelium-derived cancer cells and point to a defect of dystroglycan glycosylation as a factor in cancer progression.


Human Gene Therapy | 2004

Redox Regulation of Pancreatic Cancer Cell Growth: Role of Glutathione Peroxidase in the Suppression of the Malignant Phenotype

Jingru Liu; Marilyn M. Hinkhouse; Wenqing Sun; Christine J. Weydert; Justine M. Ritchie; Larry W. Oberley; Joseph J. Cullen

Pancreatic cancer has low levels of antioxidant enzymes including manganese superoxide dismutase (MnSOD), which converts superoxide radical (O(2)(*-)) into hydrogen peroxide (H(2)O(2)), and glutathione peroxidase (GPx), which converts H(2)O(2) into water. Recent studies have demonstrated that overexpression of MnSOD has a tumor-suppressive effect in pancreatic cancer. However, GPx overexpression has been shown to reverse the tumor cell growth inhibition caused by MnSOD overexpression in other types of cancer. Our aims were to determine if overexpression of GPx alters in vitro pancreatic cancer cell behavior and if delivering the GPx gene directly to tumor xenografts alters growth and survival. In vitro, AdGPx slowed tumor growth by 39% and AdMnSOD slowed tumor growth by 35%. AdGPx also decreased plating efficiency and growth in soft agar. The combination of AdGPx and AdMnSOD had the greatest effect on tumor cell growth suppression with a 71% reduction in cell growth compared to controls. In vivo, either AdGPx or AdMnSOD alone slowed tumor growth by 51% and 54%, respectively, while the combination of AdGPx and AdMnSOD potentiated tumor growth suppression by 81% of controls and increased animal survival. GPx may be a tumor suppressor gene in pancreatic cancer. Delivery of the GPx gene alone or in combination with the MnSOD gene may prove beneficial for treatment of pancreatic cancer.


Free Radical Biology and Medicine | 2003

Inhibition of oral cancer cell growth by adenovirusMnSOD plus BCNU treatment.

Christine J. Weydert; Benjamin Barnes Smith; Linjing Xu; Kevin C. Kregel; Justine M. Ritchie; Charles S. Davis; Larry W. Oberley

We hypothesized that inhibitors of peroxide removal, such as BCNU, an indirect inhibitor of glutathione peroxidase (GPx), and 3-amino-1,2,4-triazole (AT), a direct inhibitor of catalase (CAT), should cause toxicity to cancer cells after manganese superoxide dismutase (MnSOD) overexpression due to elevated peroxide levels. In vitro, hamster cheek pouch carcinoma cells (HCPC-1) and human oral squamous carcinoma cells (SCC-25) were infected with various combinations of adenovirus containing MnSOD cDNA (AdMnSOD). Cells were then treated with or without BCNU and assayed for viability using Annexin/PI staining and flow cytometry. In AdMnSOD plus BCNU-treated SCC-25 and HCPC-1 cells, a 30-60% decrease in cell viability was observed compared to BCNU alone. In vivo, HCPC-1 and SCC-25 xenografts were allowed to grow to approximately 70 mm(3) and 10(9) plaque forming units (pfu) of AdMnSOD were injected directly into the tumors. Two days later, 15 or 30 mg/kg BCNU was injected intratumorally. Tumor growth was greatly inhibited (4- to 20-fold) by this combined treatment, as well as increasing animal survival. Tumor volume could be decreased further by giving multiple doses of AdMnSOD or inhibiting catalase activity with AT. These results suggest that, by using these combination therapies, a significant decrease in tumor mass can be achieved.


Radiation Research | 2002

Delayed cytoprotection after enhancement of Sod2 (MnSOD) gene expression in SA-NH mouse sarcoma cells exposed to WR-1065, the active metabolite of amifostine.

Jeffrey S. Murley; Yasushi Kataoka; Christine J. Weydert; Larry W. Oberley; David J. Grdina

Abstract Murley, J. S., Kataoka, Y., Weydert, C. J., Oberley, L. W. and Grdina, D. J. Delayed Cytoprotection after Enhancement of Sod2 (MnSOD) Gene Expression in SA-NH Mouse Sarcoma Cells Exposed to WR-1065, the Active Metabolite of Amifostine. Radiat. Res. 158, 101–109 (2002). SA-NH mouse sarcoma cells were grown to confluence and then exposed to either 40 μM or 4 mM of WR-1065, i.e. the active thiol form of amifostine, for 30 min and then washed. Total RNA and protein were isolated at various times up to 24 h after exposure. Both concentrations of WR-1065 were equally effective in affecting Sod2 (also known as MnSOD) gene expression and protein levels. Northern blot analysis using a mouse cDNA probe revealed three Sod2 transcripts of 1, 4 and 6 kb. Expression of both the 4- and 6-kb transcripts increased by 20 and 60%, respectively, and remained elevated over a period of 4 to 20 h. Sod2 protein levels, as determined by Western blot analysis, increased 15-fold over background control levels over the same interval. Sod2 protein was evaluated using activity gels and was found to be active. SA-NH cells were irradiated with X rays either in the presence of 40 μM or 4 mM WR-1065 or 24 h later after its removal, when Sod2 protein levels were most elevated. No protection was observed for cells irradiated in the presence of 40 μM WR-1065. In contrast, survival after a dose of 2 Gy was elevated 1.27-, 1.14- and 1.20-fold in SA-NH cells irradiated in the presence of 4 mM WR-1065 or 24 h after exposure of the cells to 40 μM and 4 mM WR-1065, respectively. The increased survival levels observed 24 h after exposure to WR-1065 represents a delayed radioprotective effect of WR-1065 and corresponds to the time at which Sod2 protein levels are most elevated. These data demonstrate a novel mechanism for radioprotection by WR-1065 and suggest a new potential concern regarding the issue of tumor protection.


PLOS ONE | 2012

Eradication of metastatic renal cell carcinoma after adenovirus-encoded TNF-related apoptosis-inducing ligand (TRAIL)/CpG immunotherapy

Lyse A. Norian; Timothy P. Kresowik; Henry M. Rosevear; Britnie R. James; Timothy Robert Rosean; Andrew J. Lightfoot; Tamara A. Kucaba; Christopher Schwarz; Christine J. Weydert; Michael D. Henry; Thomas S. Griffith

Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC.


Antioxidants & Redox Signaling | 2001

Constitutive Activation of Transcription Factor AP-2 Is Associated with Decreased MnSOD Expression in Transformed Human Lung Fibroblasts

Chun-Hong Zhu; Yuanhui Huang; Christine J. Weydert; Larry W. Oberley; Frederick E. Domann

Activator protein-2 (AP-2) is a transcription factor with transactivating and transrepressing potential in different promoter contexts. AP-2 contains seven cysteines, and its in vitro DNA binding activity is redox-sensitive. Superoxide dismutase-2 (SOD2), which encodes the antioxidant enzyme manganese superoxide dismutase (MnSOD), is a putative tumor suppressor gene whose loss of expression is associated with the malignant phenotype. SOD2 promoter mutations that generate new AP-2 sites are associated with loss of MnSOD expression in cancer cells. In the current study, we have identified an inverse expression pattern between AP-2 and MnSOD in normal versus transformed human cells. MRC5 cells are a normal human lung fibroblast cell strain that is mortal and senesces after a certain number of passages in vitro. MRC5-VA is a simian virus transformed variant of MRC5. We determined the levels of expression of MnSOD and AP-2 in these two cell types at the levels of mRNA, protein, and activity. Our results indicated that MnSOD expression was significantly decreased in MRC5-VA cells compared with MRC5 cells at each level of investigation, whereas AP-2 showed an opposing pattern of expression and DNA binding activity. These results suggest that AP-2 may participate in the mechanism(s) underlying decreased expression of SOD2 in transformed cells.


Cancers | 2010

Superoxide Enhances the Antitumor Combination of AdMnSOD Plus BCNU in Breast Cancer

Wenqing Sun; Christine J. Weydert; Yuping Zhang; Lei Yu; Jingru Liu; Douglas R. Spitz; Joseph J. Cullen; Larry W. Oberley

Overexpression of manganese superoxide dismutase (MnSOD) can sensitize a variety of cancer cell lines to many anticancer drugs. Recent work has shown that cancer cells can be sensitized to cell killing by raising peroxide levels through increased manganese superoxide dismutase (MnSOD) when combined with inhibition of peroxide removal. Here we utilize the mechanistic property of one such anticancer drug, BCNU, which inhibits glutathione reductase (GR), compromising the glutathione peroxidase system thereby inhibiting peroxide removal. The purpose of this study was to determine if anticancer modalities known to produce superoxide radicals can increase the antitumor effect of MnSOD overexpression when combined with BCNU. To enhance MnSOD, an adenoviral construct containing the cDNA for MnSOD (AdMnSOD) was introduced into human breast cancer cell line, ZR-75-1. AdMnSOD infection alone did not alter cell killing, however when GR was inhibited with either BCNU or siRNA, cytotoxicity increased. Futhermore, when the AdMnSOD + BCNU treatment was combined with agents that enhance steady-state levels of superoxide (TNF-α, antimycin, adriamycin, photosensitizers, and ionizing radiation), both cell cytotoxicity and intracellular peroxide levels increased. These results suggest that the anticancer effect of AdMnSOD combined with BCNU can be enhanced by agents that increase generation of superoxide.

Collaboration


Dive into the Christine J. Weydert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin P. Campbell

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wenqing Sun

University of Texas at El Paso

View shared research outputs
Researchain Logo
Decentralizing Knowledge