Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Luong is active.

Publication


Featured researches published by Christine Luong.


Nature | 1998

Design of potent selective zinc-mediated serine protease inhibitors.

Bradley A. Katz; James M. Clark; Janet Finer-Moore; Thomas E. Jenkins; Charles R. Johnson; Michael J. Ross; Christine Luong; William R. Moore; Robert M. Stroud

Many serine proteases are targets for therapeutic intervention because they often play key roles in disease. Small molecule inhibitors of serine proteases with high affinity are especially interesting as they could be used as scaffolds from which to develop drugs selective for protease targets. One such inhibitor is bis(5-amidino-2-benzimidazolyl)methane (BABIM), standing out as the best inhibitor of trypsin (by a factor of over 100) in a series of over 60 relatively closely related analogues. By probing the structural basis of inhibition, we discovered, using crystallographic methods, a new mode of high-affinity binding in which a Zn2+ ion is tetrahedrally coordinated between two chelating nitrogens of BABIM and two active site residues, His 57 and Ser 195. Zn2+, at subphysiological levels, enhances inhibition by over 103-fold. The distinct Zn2+ coordination geometry implies a strong dependence of affinity on substituents. This unique structural paradigm has enabled development of potent, highly selective, Zn2+-dependent inhibitors of several therapeutically important serine proteases, using a physiologically ubiquitous metal ion.


Chemistry & Biology | 2000

Structural basis for selectivity of a small molecule, S1-binding, submicromolar inhibitor of urokinase-type plasminogen activator.

Bradley A. Katz; Richard L. Mackman; Christine Luong; Kesavan Radika; Arnold Martelli; Paul A. Sprengeler; Jing Wang; Hedy Chan; Lance Wong

BACKGROUND Urokinase-type plasminogen activator (uPA) is a protease associated with tumor metastasis and invasion. Inhibitors of uPA may have potential as drugs for prostate, breast and other cancers. Therapeutically useful inhibitors must be selective for uPA and not appreciably inhibit the related, and structurally and functionally similar enzyme, tissue-type plasminogen activator (tPA), involved in the vital blood-clotting cascade. RESULTS We produced mutagenically deglycosylated low molecular weight uPA and determined the crystal structure of its complex with 4-iodobenzo[b]thiophene 2-carboxamidine (K(i) = 0.21 +/- 0.02 microM). To probe the structural determinants of the affinity and selectivity of this inhibitor for uPA we also determined the structures of its trypsin and thrombin complexes, of apo-trypsin, apo-thrombin and apo-factor Xa, and of uPA, trypsin and thrombin bound by compounds that are less effective uPA inhibitors, benzo[b]thiophene-2-carboxamidine, thieno[2,3-b]-pyridine-2-carboxamidine and benzamidine. The K(i) values of each inhibitor toward uPA, tPA, trypsin, tryptase, thrombin and factor Xa were determined and compared. One selectivity determinant of the benzo[b]thiophene-2-carboxamidines for uPA involves a hydrogen bond at the S1 site to Ogamma(Ser190) that is absent in the Ala190 proteases, tPA, thrombin and factor Xa. Other subtle differences in the architecture of the S1 site also influence inhibitor affinity and enzyme-bound structure. CONCLUSIONS Subtle structural differences in the S1 site of uPA compared with that of related proteases, which result in part from the presence of a serine residue at position 190, account for the selectivity of small thiophene-2-carboxamidines for uPA, and afford a framework for structure-based design of small, potent, selective uPA inhibitors.


Structure | 2003

The Structure of the Extracellular Region of Human Hepsin Reveals a Serine Protease Domain and a Novel Scavenger Receptor Cysteine-Rich (SRCR) Domain

John R. Somoza; Joseph D. Ho; Christine Luong; Manjiri Ghate; Paul A. Sprengeler; Kyle Mortara; William D. Shrader; David Sperandio; Hedy Chan; Mary E. McGrath; Bradley A. Katz

Hepsin is an integral membrane protein that may participate in cell growth and in maintaining proper cell morphology and is overexpressed in a number of primary tumors. We have determined the 1.75 A resolution structure of the extracellular component of human hepsin. This structure includes a 255-residue trypsin-like serine protease domain and a 109-residue region that forms a novel, poorly conserved, scavenger receptor cysteine-rich (SRCR) domain. The two domains are associated with each other through a single disulfide bond and an extensive network of noncovalent interactions. The structure suggests how the extracellular region of hepsin may be positioned with respect to the plasma membrane.


Chemistry & Biology | 2001

Engineering inhibitors highly selective for the S1 sites of Ser190 trypsin-like serine protease drug targets

Bradley A. Katz; Paul A. Sprengeler; Christine Luong; Erik Verner; Kyle Elrod; Matt Kirtley; James W. Janc; Jeffrey R. Spencer; J. Guy Breitenbucher; Hon C. Hui; Danny McGee; Darin Allen; Arnold Martelli; Richard L. Mackman

BACKGROUND Involved or implicated in a wide spectrum of diseases, trypsin-like serine proteases comprise well studied drug targets and anti-targets that can be subdivided into two major classes. In one class there is a serine at position 190 at the S1 site, as in urokinase type plasminogen activator (urokinase or uPA) and factor VIIa, and in the other there is an alanine at 190, as in tissue type plasminogen activator (tPA) and factor Xa. A hydrogen bond unique to Ser190 protease-arylamidine complexes between O gamma(Ser190) and the inhibitor amidine confers an intrinsic preference for such inhibitors toward Ser190 proteases over Ala190 counterparts. RESULTS Based on the structural differences between the S1 sites of Ser190 and Ala190 protease-arylamidine complexes, we amplified the selectivity of amidine inhibitors toward uPA and against tPA, by factors as high as 220-fold, by incorporating a halo group ortho to the amidine of a lead inhibitor scaffold. Comparison of K(i) values of such halo-substituted and parent inhibitors toward a panel of Ser190 and Ala190 proteases demonstrates pronounced selectivity of the halo analogs for Ser190 proteases over Ala190 counterparts. Crystal structures of Ser190 proteases, uPA and trypsin, and of an Ala190 counterpart, thrombin, bound by a set of ortho (halo, amidino) aryl inhibitors and of non-halo parents reveal the structural basis of the exquisite selectivity and validate the design principle. CONCLUSIONS Remarkable selectivity enhancements of exceptionally small inhibitors are achieved toward the uPA target over the highly similar tPA anti-target through a single atom substitution on an otherwise relatively non-selective scaffold. Overall selectivities for uPA over tPA as high as 980-fold at physiological pH were realized. The increase in selectivity results from the displacement of a single bound water molecule common to the S1 site of both the uPA target and the tPA anti-target because of the ensuing deficit in hydrogen bonding of the arylamidine inhibitor when bound in the Ala190 protease anti-target.


Journal of Medicinal Chemistry | 2001

Exploiting subsite S1 of trypsin-like serine proteases for selectivity: potent and selective inhibitors of urokinase-type plasminogen activator.

Richard L. Mackman; Bradley A. Katz; J. Guy Breitenbucher; Hon C. Hui; Erik Verner; Christine Luong; Liang Liu; Paul A. Sprengeler

A nonselective inhibitor of trypsin-like serine proteases, 2-(2-hydroxybiphenyl-3-yl)-1H-indole-5-carboxamidine (1) (Verner, E.; Katz, B. A.; Spencer, J.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika. K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44, 2753-2771) has been optimized through minor structural changes on the S1 binding group to afford remarkably selective and potent inhibitors of urokinase-type plasminogen activator (uPA). The trypsin-like serine proteases(1) that comprise drug targets can be broadly categorized into two subfamilies, those with Ser190 and those with Ala190. A single-atom modification, for example, replacement of hydrogen for chlorine at the 6-position of the 5-amidinoindole P1 group on 1, generated up to 6700-fold selectivity toward the Ser190 enzymes and against the Ala190 enzymes. The larger chlorine atom displaces a water molecule (H(2)O1(S1)) that binds near residue 190 in all the complexes of 1, and related inhibitors, in uPA, thrombin, and trypsin. The water molecule, H(2)O1(S1), in both the Ser190 or Ala190 enzymes, hydrogen bonds with the amidine N1 nitrogen of the inhibitor. When it is displaced, a reduction in affinity toward the Ala190 enzymes is observed due to the amidine N1 nitrogen of the bound inhibitor being deprived of a key hydrogen-bonding partner. In the Ser190 enzymes the affinity is maintained since the serine hydroxyl oxygen O gamma(Ser190) compensates for the displaced water molecule. High-resolution crystallography provided evidence for the displacement of the water molecule and validated the design rationale. In summation, a novel and powerful method for engineering selectivity toward Ser190 proteases and against Ala190 proteases without substantially increasing molecular weight is described.


Journal of Molecular Biology | 2003

Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors.

Bradley A. Katz; Kyle Elrod; Erik Verner; Richard L. Mackman; Christine Luong; William D. Shrader; Martin Sendzik; Jeffrey R. Spencer; Paul A. Sprengeler; Aleks Kolesnikov; Vincent W.-F. Tai; Hon C. Hui; J.Guy Breitenbucher; Darin Allen; James W. Janc

An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog. Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.


Bioorganic & Medicinal Chemistry Letters | 2002

2-(2-Hydroxy-3-alkoxyphenyl)-1H-benzimidazole-5-carboxamidine derivatives as potent and selective urokinase-type plasminogen activator inhibitors.

Richard L. Mackman; Hon C. Hui; J.Guy Breitenbucher; Bradley A. Katz; Christine Luong; Arnold Martelli; Danny McGee; Kesavan Radika; Martin Sendzik; Jeffrey R. Spencer; Paul A. Sprengeler; James D. Tario; Erik Verner; Jing Wang

The development of potent and selective urokinase-type plasminogen activator (uPA) inhibitors based on the lead molecule 2-(2-hydroxy-3-ethoxyphenyl)-1H-benzimidazole-5-carboxamidine (3a) is described.


Bioorganic & Medicinal Chemistry Letters | 2002

4-Aminoarylguanidine and 4-aminobenzamidine derivatives as potent and selective urokinase-type plasminogen activator inhibitors.

Jeffrey R. Spencer; Danny McGee; Darin Allen; Bradley A. Katz; Christine Luong; Martin Sendzik; Neil Squires; Richard L. Mackman

The structure-based design of potent and selective urokinase-type plasminogen activator (uPA) inhibitors with 4-aminoarylamidine or 4-aminoarylguanidine S1 binding groups, is described.


Bioorganic & Medicinal Chemistry Letters | 2001

Development of potent and selective factor Xa inhibitors

Roopa Rai; Aleksandr Kolesnikov; Yong Li; Wendy B. Young; Ellen M. Leahy; Paul A. Sprengeler; Erik Verner; William D. Shrader; Jana Burgess-Henry; Joan Sangalang; Darin Allen; Xi Chen; Bradley A. Katz; Christine Luong; Kyle Elrod; Lynne Cregar

The development of potent and selective small molecule inhibitors of factor Xa is described.


Structure | 2004

Structural Snapshots of Human HDAC8 Provide Insights into the Class I Histone Deacetylases

John R. Somoza; Robert J. Skene; Bradley A. Katz; Clifford D. Mol; Joseph D. Ho; Andy Jennings; Christine Luong; Andrew S. Arvai; Joseph J. Buggy; Ellen Chi; Jie Tang; Bi-Ching Sang; Erik Verner; Robert Wynands; Ellen M. Leahy; Douglas R. Dougan; Gyorgy Snell; Marc Navre; Mark W. Knuth; Ronald V. Swanson; Duncan E. McRee; Leslie W. Tari

Collaboration


Dive into the Christine Luong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge