Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christodoulos Xinaris is active.

Publication


Featured researches published by Christodoulos Xinaris.


Journal of The American Society of Nephrology | 2012

In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions

Christodoulos Xinaris; Valentina Benedetti; Paola Rizzo; Mauro Abbate; Daniela Corna; Nadia Azzollini; Sara Conti; Mathieu Unbekandt; Jamie A. Davies; Marina Morigi; Ariela Benigni; Giuseppe Remuzzi

The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.


Stem Cells and Development | 2012

Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential

Cinzia Rota; Barbara Imberti; Michela Pozzobon; Martina Piccoli; Paolo De Coppi; Anthony Atala; Elena Gagliardini; Christodoulos Xinaris; Valentina Benedetti; Aline S.C. Fabricio; Elisa Squarcina; Mauro Abbate; Ariela Benigni; Giuseppe Remuzzi; Marina Morigi

Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in immunodeficient mice injected with the nephrotoxic drug cisplatin. Infusion of hAFS cells in cisplatin mice improved renal function and limited tubular damage, although not to control level, and prolonged animal survival. Human AFS cells engrafted injured kidney predominantly in peritubular region without acquiring tubular epithelial markers. Human AFS cells exerted antiapoptotic effect, activated Akt, and stimulated proliferation of tubular cells possibly via local release of factors, including interleukin-6, vascular endothelial growth factor, and stromal cell-derived factor-1, which we documented in vitro to be produced by hAFS cells. The therapeutic potential of hAFS cells was enhanced by cell pretreatment with glial cell line-derived neurotrophic factor (GDNF), which markedly ameliorated renal function and tubular injury by increasing stem cell homing to the tubulointerstitial compartment. By in vitro studies, GDNF increased hAFS cell production of growth factors, motility, and expression of receptors involved in cell homing and survival. These findings indicate that hAFS cells can promote functional recovery and contribute to renal regeneration in AKI mice via local production of mitogenic and prosurvival factors. The effects of hAFS cells can be remarkably enhanced by GDNF preconditioning.


Cell Transplantation | 2013

A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion.

Christodoulos Xinaris; Marina Morigi; Valentina Benedetti; Barbara Imberti; Aline S.C. Fabricio; Elisa Squarcina; Ariela Benigni; Elena Gagliardini; Giuseppe Remuzzi

Mesenchymal stem cells (MSCs) of bone marrow origin appear to be an attractive candidate for cell-based therapies. However, the major barrier to the effective implementation of MSC-based therapies is the lack of specific homing of exogenously infused cells and overall the inability to drive them to the diseased or damaged tissue. In order to circumvent these limitations, we developed a preconditioning strategy to optimize MSC migration efficiency and potentiate their beneficial effect at the site of injury. Initially, we screened different molecules by using an in vitro injury–migration setting, and subsequently, we evaluated the effectiveness of the different strategies in mice with acute kidney injury (AKI). Our results showed that preconditioning of MSCs with IGF-1 before infusion improved cell migration capacity and restored normal renal function after AKI. The present study demonstrates that promoting migration of MSCs could increase their therapeutic potential and indicates a new therapeutic paradigm for organ repair.


Scientific Reports | 2015

Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury

Barbara Imberti; Susanna Tomasoni; Osele Ciampi; Anna Pezzotta; Manuela Derosas; Christodoulos Xinaris; Paola Rizzo; Evangelia Papadimou; Rubina Novelli; Ariela Benigni; Giuseppe Remuzzi; Marina Morigi

Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy.


Journal of The American Society of Nephrology | 2016

Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells

Christodoulos Xinaris; Valentina Benedetti; Rubina Novelli; Mauro Abbate; Paola Rizzo; Sara Conti; Susanna Tomasoni; Daniela Corna; Michela Pozzobon; Daniela Cavallotti; Takashi Yokoo; Marina Morigi; Ariela Benigni; Giuseppe Remuzzi

Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research.


Nephron | 2015

Organoid Models and Applications in Biomedical Research

Christodoulos Xinaris; Valerio Brizi; Giuseppe Remuzzi

Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ three-dimensional (3D) culture systems that allow stem cell-derived or tissue progenitor cells to self-organize into 3D structures. These systems evolved, methodologically and conceptually, from classical reaggregation experiments, showing that dissociated cells from embryonic organs can reaggregate and re-create the original organ architecture. Since organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we outline historical advances in the field and describe some of the major recent developments in 3D human organoid formation. Finally, we underline current limitations and highlight examples of how organoid technology can be applied in biomedical research.


Stem Cell Research | 2016

Generation of functional podocytes from human induced pluripotent stem cells

Osele Ciampi; Roberto Iacone; Lorena Longaretti; Valentina Benedetti; Martin Graf; Maria Chiara Magnone; Christoph Patsch; Christodoulos Xinaris; Giuseppe Remuzzi; Ariela Benigni; Susanna Tomasoni

Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.


Stem cell reports | 2015

Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

Evangelia Papadimou; Marina Morigi; Paraskevas Iatropoulos; Christodoulos Xinaris; Susanna Tomasoni; Valentina Benedetti; Lorena Longaretti; Cinzia Rota; Marta Todeschini; Paola Rizzo; Martino Introna; Maria Grazia de Simoni; Giuseppe Remuzzi; Michael S. Goligorsky; Ariela Benigni

Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.


PLOS ONE | 2015

Renal primordia activate kidney regenerative events in a rat model of progressive renal disease

Barbara Imberti; Daniela Corna; Paola Rizzo; Christodoulos Xinaris; Mauro Abbate; Lorena Longaretti; Paola Cassis; Valentina Benedetti; Ariela Benigni; Carlamaria Zoja; Giuseppe Remuzzi; Marina Morigi

New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration.


Methods of Molecular Biology | 2016

Generation of Functional Kidney Organoids In Vivo Starting from a Single-Cell Suspension

Valentina Benedetti; Valerio Brizi; Christodoulos Xinaris

Novel methods in developmental biology and stem cell research have made it possible to generate complex kidney tissues in vitro that resemble whole organs and are termed organoids. In this chapter we describe a technique using suspensions of fully dissociated mouse kidney cells to yield organoids that can become vascularized in vivo and mature and display physiological functions. This system can be used to produce fine-grained human-mouse chimeric organoids in which the renal differentiation potential of human cells can be assessed. It can also be an excellent method for growing chimeric organoids in vivo using human stem cells, which can differentiate into specialized kidney cells and exert nephron-specific functions. We provide detailed methods, a brief discussion of critical points, and describe some successfully implemented examples of the system.

Collaboration


Dive into the Christodoulos Xinaris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Benedetti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Ariela Benigni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Marina Morigi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Imberti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Paola Rizzo

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Susanna Tomasoni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Daniela Corna

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Lorena Longaretti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cinzia Rota

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge