Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Imberti is active.

Publication


Featured researches published by Barbara Imberti.


Journal of The American Society of Nephrology | 2004

Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure

Marina Morigi; Barbara Imberti; Carla Zoja; Daniela Corna; Susanna Tomasoni; Mauro Abbate; Daniela Rottoli; Stefania Angioletti; Ariela Benigni; Norberto Perico; Malcolm R. Alison; Giuseppe Remuzzi

Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. The model of renal injury induced in mice by the anticancer agent cisplatin was chosen. Injection of mesenchymal stem cells of male bone marrow origin remarkably protected cisplatin-treated syngeneic female mice from renal function impairment and severe tubular injury. Y chromosome-containing cells localized in the context of the tubular epithelial lining and displayed binding sites for Lens culinaris lectin, indicating that mesenchymal stem cells engraft the damaged kidney and differentiate into tubular epithelial cells, thereby restoring renal structure and function. Mesenchymal stem cells markedly accelerated tubular proliferation in response to cisplatin-induced damage, as revealed by higher numbers of Ki-67-positive cells within the tubuli with respect to cisplatin-treated mice that were given saline. Hematopoietic stem cells failed to exert beneficial effects. These results offer a strong case for exploring the possibility that mesenchymal stem cells by virtue of their renotropic property and tubular regenerative potential may have a role in the treatment of acute renal failure in humans.


Journal of Clinical Investigation | 1998

Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion.

Marina Morigi; Stefania Angioletti; Barbara Imberti; Roberta Donadelli; Gianluca Micheletti; Marina Figliuzzi; Andrea Remuzzi; Carla Zoja; Giuseppe Remuzzi

We addressed the role of hyperglycemia in leukocyte-endothelium interaction under flow conditions by exposing human umbilical vein endothelial cells for 24 h to normal (5 mM), high concentration of glucose (30 mM), advanced glycosylation end product-albumin (100 microg/ml), or hyperglycemic (174-316 mg/dl) sera from patients with diabetes and abnormal hemoglobin A1c (8.1+/-1.4%). At the end of incubation endothelial cells were perfused with total leukocyte suspension in a parallel plate flow chamber under laminar flow (1.5 dyn/cm2). Rolling and adherent cells were evaluated by digital image processing. Results showed that 30 mM glucose significantly (P < 0. 01) increased the number of adherent leukocytes to endothelial cells in respect to control (5 mM glucose; 151+/-19 versus 33+/-8 cells/mm2). A similar response was induced by endothelial stimulation with IL-1beta, here used as positive control (195+/-20 cells/mm2). The number of rolling cells on endothelial surface was not affected by high glucose level. Stable adhesion of leukocytes to glucose-treated as well as to IL-1beta-stimulated endothelial cells was preceded by short interaction of leukocytes with the endothelial surface. The distance travelled by leukocytes before arrest on 30 mM glucose, or on IL-1beta-treated endothelial cells, was significantly (P < 0.01) higher than that observed for leukocytes adhering on control endothelium (30 mM glucose: 76.7+/-3.5; IL1beta: 69.7+/-4 versus 5 mM glucose: 21.5+/-5 microm). Functional blocking of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells with the corresponding mouse mAb significantly inhibited glucose-induced increase in leukocyte adhesion (67+/-16, 83+/-12, 62+/-8 versus 144+/-21 cells/ mm2). Confocal fluorescence microscopy studies showed that 30 mM glucose induced an increase in endothelial surface expression of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1. Electrophoretic mobility shift assay of nuclear extracts of human umbilical vein endothelial cells (HUVEC) exposed for 1 h to 30 mM glucose revealed an intense NF-kB activation. Treatment of HUVEC exposed to high glucose with the NF-kB inhibitors pyrrolidinedithiocarbamate (100 microM) and tosyl-phe-chloromethylketone (25 microM) significantly reduced (P < 0.05) leukocyte adhesion in respect to HUVEC treated with glucose alone. A significant (P < 0.01) inhibitory effect on glucose-induced leukocyte adhesion was observed after blocking protein kinase C activity with staurosporine (5 nM). When HUVEC were treated with specific antisense oligodesoxynucleotides against PKCalpha and PKCepsilon isoforms before the addition of 30 mM glucose, a significant (P < 0.05) reduction in the adhesion was also seen. Advanced glycosylation end product-albumin significantly increased the number of adhering leukocytes in respect to native albumin used as control (110+/-16 versus 66+/-7, P < 0.01). Sera from diabetic patients significantly (P < 0.01) enhanced leukocyte adhesion as compared with controls, despite normal levels of IL-1beta and TNFalpha in these sera. These data indicate that high glucose concentration and hyperglycemia promote leukocyte adhesion to the endothelium through upregulation of cell surface expression of adhesive proteins, possibly depending on NF-kB activation.


Journal of Immunology | 2008

Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells

Federica Casiraghi; Nadia Azzollini; Paola Cassis; Barbara Imberti; Marina Morigi; Daniela Cugini; Regiane Aparecida Cavinato; Marta Todeschini; Samantha Solini; Aurelio Sonzogni; Norberto Perico; Giuseppe Remuzzi; Marina Noris

In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day −7) or double (portal vein, day −7 and tail vein, day −1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties. Both the induction (pretransplant) and the maintenance phase (>100 days posttransplant) of donor-derived MSC-induced tolerance were associated with CD4+CD25+Foxp3+ Treg expansion and impaired anti-donor Th1 activity. MSC-induced regulatory T cells (Treg) were donor-specific since adoptive transfer of splenocytes from tolerant mice prevented the rejection of fully MHC-mismatched donor-specific secondary allografts but not of third-party grafts. In addition, infusion of recipient-derived B6 MSC tolerized a semiallogeneic B6C3 cardiac allograft, but not a fully MHC-mismatched BALB/c graft, and expanded Treg. A double i.v. pretransplant infusion of recipient-derived MSC had the same tolerogenic effect as the combined intraportal/i.v. MSC infusions, which makes the tolerogenic protocol applicable in a clinical setting. In contrast, single MSC infusions given either peritransplant or 1 day after transplant were less effective. Altogether these findings indicate that MSC immunomodulatory properties require HSC removal, partial sharing of MHC Ags between the donor and the recipient and pretransplant infusion, and are associated with expansion of donor-specific Treg.


Stem Cells | 2008

Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice

Marina Morigi; Martino Introna; Barbara Imberti; Daniela Corna; Mauro Abbate; Cinzia Rota; Daniela Rottoli; Ariela Benigni; Norberto Perico; Carla Zoja; Alessandro Rambaldi; Andrea Remuzzi; Giuseppe Remuzzi

Transplantation of bone marrow mesenchymal stem cells (BM‐MSC) or stromal cells from rodents has been identified as a strategy for renal repair in experimental models of acute kidney injury (AKI), a highly life‐threatening clinical setting. The therapeutic potential of BM‐MSC of human origin has not been reported so far. Here, we investigated whether human BM‐MSC treatment could prevent AKI induced by cisplatin and prolong survival in an immunodeficient mouse model. Results showed that human BM‐MSC infusion decreased proximal tubular epithelial cell injury and ameliorated the deficit in renal function, resulting in reduced recipient mortality. Infused BM‐MSC became localized predominantly in peritubular areas and acted to reduce renal cell apoptosis and to increase proliferation. BM‐MSC also induced protection against AKI‐related peritubular capillary changes consisting of endothelial cell abnormalities, leukocyte infiltration, and low endothelial cell and lumen volume density as assessed by morphometric analysis. These findings indicate that human MSC of bone marrow origin hold potential to prolong survival in AKI and should be considered for testing in a clinical trial.


Journal of The American Society of Nephrology | 2007

Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair

Barbara Imberti; Marina Morigi; Susanna Tomasoni; Cinzia Rota; Daniela Corna; Lorena Longaretti; Daniela Rottoli; Federica Valsecchi; Ariela Benigni; Jun Wang; Mauro Abbate; Carla Zoja; Giuseppe Remuzzi

In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments with MSC and cisplatin-injured proximal tubular epithelial cells (PTEC). Exposure of PTEC to cisplatin markedly reduced cell viability at 4 days, but co-culture with MSC provided a protective effect by promoting tubular cell proliferation. This effect was mediated by insulin-like growth factor-1 (IGF-1), highly expressed by MSC as mRNA and protein, since blocking the growth factors function with a specific antibody attenuated cell proliferation of PTEC. Confirming this, knocking down IGF-1 expression in MSC by small interfering-RNA also resulted in a significant decrease in PTEC proliferation and increased apoptosis. Furthermore, in the murine model of cisplatin-induced kidney injury, administering IGF-1 gene-silenced MSC limited their protective effect on renal function and tubular structure. These findings indicate that MSC exert beneficial effects on tubular cell repair in acute kidney injury by producing the mitogenic and pro-survival factor IGF-1.


Stem Cells | 2009

Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury

Marina Morigi; Cinzia Rota; Tiziana Montemurro; Elisa Montelatici; Viviana Lo Cicero; Barbara Imberti; Mauro Abbate; Carla Zoja; Paola Cassis; Lorena Longaretti; Paolo Rebulla; Martino Introna; Chiara Capelli; Ariela Benigni; Giuseppe Remuzzi; Lorenza Lazzari

In search for new sources of mesenchymal stem cells (MSCs) for renal repair in acute kidney injury (AKI), we investigated the potential of human cord blood (CB)‐MSCs to cure mice with AKI. Infusion of CB‐MSCs in immunodeficient mice with cisplatin‐induced AKI ameliorated both renal function and tubular cell injury, and prolonged survival. Transplanted CB‐MSCs localized in peritubular areas, limited capillary alterations and neutrophil infiltration. Apoptosis reduced and tubular cell proliferation increased by virtue of stem cell capacity to produce growth factors. The reno‐protective effect of CB‐MSCs was further confirmed by their ability to inhibit oxidative damage and to induce the prosurvival factor Akt in tubular cells. The evidence that CB‐MSCs in vitro increased the production of growth factors and inhibited IL‐1β and TNFα synthesis when cocultured with damaged proximal tubular cells indicates a regenerative and anti‐inflammatory action of stem cell treatment. Altogether these results highlight the potential of human CB‐MSCs as future cell therapy for testing in human AKI. STEM CELLS 2010;28:513–522


Stem Cells and Development | 2012

Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential

Cinzia Rota; Barbara Imberti; Michela Pozzobon; Martina Piccoli; Paolo De Coppi; Anthony Atala; Elena Gagliardini; Christodoulos Xinaris; Valentina Benedetti; Aline S.C. Fabricio; Elisa Squarcina; Mauro Abbate; Ariela Benigni; Giuseppe Remuzzi; Marina Morigi

Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in immunodeficient mice injected with the nephrotoxic drug cisplatin. Infusion of hAFS cells in cisplatin mice improved renal function and limited tubular damage, although not to control level, and prolonged animal survival. Human AFS cells engrafted injured kidney predominantly in peritubular region without acquiring tubular epithelial markers. Human AFS cells exerted antiapoptotic effect, activated Akt, and stimulated proliferation of tubular cells possibly via local release of factors, including interleukin-6, vascular endothelial growth factor, and stromal cell-derived factor-1, which we documented in vitro to be produced by hAFS cells. The therapeutic potential of hAFS cells was enhanced by cell pretreatment with glial cell line-derived neurotrophic factor (GDNF), which markedly ameliorated renal function and tubular injury by increasing stem cell homing to the tubulointerstitial compartment. By in vitro studies, GDNF increased hAFS cell production of growth factors, motility, and expression of receptors involved in cell homing and survival. These findings indicate that hAFS cells can promote functional recovery and contribute to renal regeneration in AKI mice via local production of mitogenic and prosurvival factors. The effects of hAFS cells can be remarkably enhanced by GDNF preconditioning.


Cell Transplantation | 2006

The regenerative potential of stem cells in acute renal failure.

Marina Morigi; Ariela Benigni; Giuseppe Remuzzi; Barbara Imberti

Adult stem cells have been characterized in several tissues as a subpopulation of cells able to maintain, generate, and replace terminally differentiated cells in response to physiological cell turnover or tissue injury. Little is known regarding the presence of stem cells in the adult kidney but it is documented that under certain conditions, such as the recovery from acute injury, the kidney can regenerate itself by increasing the proliferation of some resident cells. The origin of these cells is largely undefined; they are often considered to derive from resident renal stem or progenitor cells. Whether these immature cells are a subpopulation preserved from the early stage of nephrogenesis is still a matter of investigation and represents an attractive possibility. Moreover, the contribution of bone marrow-derived stem cells to renal cell turnover and regeneration has been suggested. In mice and humans, there is evidence that extrarenal cells of bone marrow origin take part in tubular epithelium regeneration. Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. Recent studies have demonstrated that hematopoietic stem cells were mobilized following ischemia/reperfusion and engrafted the kidney to differentiate into tubular epithelium in the areas of damage. The evidence that mesenchymal stem cells, by virtue of their renoprotective property, restore renal tubular structure and also ameliorate renal function during experimental acute renal failure provides opportunities for therapeutic intervention.


Tissue Engineering | 2004

Vascular Smooth Muscle Cells on Hyaluronic Acid: Culture and Mechanical Characterization of an Engineered Vascular Construct

Andrea Remuzzi; Sara Mantero; Maria Grazia Colombo; Marina Morigi; Elena Binda; Davide Camozzi; Barbara Imberti

Esterified hyaluronic acid (HYAFF) is routinely used for clinical tissue-engineering applications such as skin and cartilage. The material is degraded by neotissue formation and degradation products are highly biocompatible. In the present article we investigate the possibility to culture vascular smooth muscle cells on this biodegradable material for the generation of tubular constructs to be used for vascular tissue engineering. We have evaluated cell attachment and growth, and the possibility to obtain a three-dimensional tubular shape culture from flat HYAFF sheets. We also evaluated the mechanical properties of the cell constructs, using a specific testing protocol, and compared them with the properties of segments of porcine coronary artery. Morphology and viability tests demonstrated that vascular cells, either from porcine or human origin, adhere and grow on nonwoven meshes of HYAFF, and that precoating of the material with fibronectin or collagen had a modest effect on cell growth and extracellular matrix production. Cell growth reached a maximum 7 days after seeding. Simple wrapping of flat sheets of nonwoven meshes containing vascular cells around a cylindrical mandrel, and culture under static conditions for 14 days, yielded tubular constructs suitable for mechanical tests. Despite cell colonization, constructs showed lower mechanical resistance as compared with porcine coronary arteries. The material used and the technique developed result in highly cellularized tubular constructs. Whether the mechanical properties may be improved by dynamic culture conditions is worthy of investigation.


Cell Transplantation | 2013

A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion.

Christodoulos Xinaris; Marina Morigi; Valentina Benedetti; Barbara Imberti; Aline S.C. Fabricio; Elisa Squarcina; Ariela Benigni; Elena Gagliardini; Giuseppe Remuzzi

Mesenchymal stem cells (MSCs) of bone marrow origin appear to be an attractive candidate for cell-based therapies. However, the major barrier to the effective implementation of MSC-based therapies is the lack of specific homing of exogenously infused cells and overall the inability to drive them to the diseased or damaged tissue. In order to circumvent these limitations, we developed a preconditioning strategy to optimize MSC migration efficiency and potentiate their beneficial effect at the site of injury. Initially, we screened different molecules by using an in vitro injury–migration setting, and subsequently, we evaluated the effectiveness of the different strategies in mice with acute kidney injury (AKI). Our results showed that preconditioning of MSCs with IGF-1 before infusion improved cell migration capacity and restored normal renal function after AKI. The present study demonstrates that promoting migration of MSCs could increase their therapeutic potential and indicates a new therapeutic paradigm for organ repair.

Collaboration


Dive into the Barbara Imberti's collaboration.

Top Co-Authors

Avatar

Giuseppe Remuzzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Marina Morigi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Carla Zoja

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Andrea Remuzzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Ariela Benigni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Christodoulos Xinaris

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Stefania Angioletti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cinzia Rota

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Daniela Corna

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Federica Casiraghi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge