Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marina Morigi is active.

Publication


Featured researches published by Marina Morigi.


Circulation Research | 1995

Nitric Oxide Synthesis by Cultured Endothelial Cells Is Modulated by Flow Conditions

Marina Noris; Marina Morigi; Roberta Donadelli; Sistiana Aiello; Marco Foppolo; Marta Todeschini; Silvia Orisio; Giuseppe Remuzzi; Andrea Remuzzi

In the present study, we examined the hypothesis that dynamic characteristics of flow modulate the production of vasoactive mediators, namely nitric oxide (NO) and endothelin-1 (ET-1), by human umbilical vein endothelial cells (HUVECs). Cells were exposed for 6 hours in a cone-and-plate apparatus to different types of flow: steady laminar, with shear stresses of 2, 8, and 12 dyne/cm2, pulsatile laminar, with shear stress from 8.2 to 16.6 dyne/cm2 and a frequency of 2 Hz; periodic laminar, with square wave cycles of 15 minutes and shear stress from 2 to 8 dyne/cm2, and turbulent, with shear stress of 8 dyne/cm2 on average. A second culture dish was kept in a normal incubator as a static control for each experiment. Laminar flow induced synthesis of NO by HUVECs that was dependent on shear-stress magnitude. Laminar shear stress at 8 dyne/cm2 also upregulated the level of NO synthase mRNA. As observed with steady laminar flow, pulsatile flow also induced an increase in NO release by endothelial cells. When HUVECs were subjected to step-change increases of laminar shear, a further increase of NO synthesis was observed, compared with steady laminar shear of the same magnitude. Turbulent flow did not upregulate NO synthase mRNA or increase NO release. Both laminar and turbulent shear stress reduced, although not significantly, ET-1 mRNA and ET-1 production compared with the static condition. These results indicate that local blood flow conditions modulate the production of vasoactive substances by endothelial cells. This may affect vascular cell functions such as nonthrombogenicity, regulation of blood flow, and vascular tone.


Journal of Immunology | 2008

Pretransplant Infusion of Mesenchymal Stem Cells Prolongs the Survival of a Semiallogeneic Heart Transplant through the Generation of Regulatory T Cells

Federica Casiraghi; Nadia Azzollini; Paola Cassis; Barbara Imberti; Marina Morigi; Daniela Cugini; Regiane Aparecida Cavinato; Marta Todeschini; Samantha Solini; Aurelio Sonzogni; Norberto Perico; Giuseppe Remuzzi; Marina Noris

In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day −7) or double (portal vein, day −7 and tail vein, day −1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties. Both the induction (pretransplant) and the maintenance phase (>100 days posttransplant) of donor-derived MSC-induced tolerance were associated with CD4+CD25+Foxp3+ Treg expansion and impaired anti-donor Th1 activity. MSC-induced regulatory T cells (Treg) were donor-specific since adoptive transfer of splenocytes from tolerant mice prevented the rejection of fully MHC-mismatched donor-specific secondary allografts but not of third-party grafts. In addition, infusion of recipient-derived B6 MSC tolerized a semiallogeneic B6C3 cardiac allograft, but not a fully MHC-mismatched BALB/c graft, and expanded Treg. A double i.v. pretransplant infusion of recipient-derived MSC had the same tolerogenic effect as the combined intraportal/i.v. MSC infusions, which makes the tolerogenic protocol applicable in a clinical setting. In contrast, single MSC infusions given either peritransplant or 1 day after transplant were less effective. Altogether these findings indicate that MSC immunomodulatory properties require HSC removal, partial sharing of MHC Ags between the donor and the recipient and pretransplant infusion, and are associated with expansion of donor-specific Treg.


Stem Cells | 2008

Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice

Marina Morigi; Martino Introna; Barbara Imberti; Daniela Corna; Mauro Abbate; Cinzia Rota; Daniela Rottoli; Ariela Benigni; Norberto Perico; Carla Zoja; Alessandro Rambaldi; Andrea Remuzzi; Giuseppe Remuzzi

Transplantation of bone marrow mesenchymal stem cells (BM‐MSC) or stromal cells from rodents has been identified as a strategy for renal repair in experimental models of acute kidney injury (AKI), a highly life‐threatening clinical setting. The therapeutic potential of BM‐MSC of human origin has not been reported so far. Here, we investigated whether human BM‐MSC treatment could prevent AKI induced by cisplatin and prolong survival in an immunodeficient mouse model. Results showed that human BM‐MSC infusion decreased proximal tubular epithelial cell injury and ameliorated the deficit in renal function, resulting in reduced recipient mortality. Infused BM‐MSC became localized predominantly in peritubular areas and acted to reduce renal cell apoptosis and to increase proliferation. BM‐MSC also induced protection against AKI‐related peritubular capillary changes consisting of endothelial cell abnormalities, leukocyte infiltration, and low endothelial cell and lumen volume density as assessed by morphometric analysis. These findings indicate that human MSC of bone marrow origin hold potential to prolong survival in AKI and should be considered for testing in a clinical trial.


Journal of Immunology | 2011

Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis

Marina Morigi; Miriam Galbusera; Sara Gastoldi; Monica Locatelli; Simona Buelli; Anna Pezzotta; Chiara Pagani; Marina Noris; Marco Gobbi; Matteo Stravalaci; Daniela Rottoli; Francesco Tedesco; Giuseppe Remuzzi; Carlamaria Zoja

Shiga toxin (Stx)-producing E.coli O157:H7 has become a global threat to public health; it is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure with thrombi occluding renal microcirculation. In this study, we explored whether Stx triggers complement-dependent microvascular thrombosis in in vitro and in vivo experimental settings of HUS. Stx induced on human microvascular endothelial cell surface the expression of P-selectin, which bound and activated C3 via the alternative pathway, leading to thrombus formation under flow. In the search for mechanisms linking complement activation and thrombosis, we found that exuberant complement activation in response to Stx generated an increased amount of C3a that caused further endothelial P-selectin expression, thrombomodulin (TM) loss, and thrombus formation. In a murine model of HUS obtained by coinjection of Stx2 and LPS and characterized by thrombocytopenia and renal dysfunction, upregulation of glomerular endothelial P-selectin was associated with C3 and fibrin(ogen) deposits, platelet clumps, and reduced TM expression. Treatment with anti–P-selectin Ab limited glomerular C3 accumulation. Factor B-deficient mice after Stx2/LPS exhibited less thrombocytopenia and were protected against glomerular abnormalities and renal function impairment, indicating the involvement of complement activation via the alternative pathway in the glomerular thrombotic process in HUS mice. The functional role of C3a was documented by data showing that glomerular fibrin(ogen), platelet clumps, and TM loss were markedly decreased in HUS mice receiving C3aR antagonist. These results identify Stx-induced complement activation, via P-selectin, as a key mechanism of C3a-dependent microvascular thrombosis in diarrhea-associated HUS.


American Journal of Pathology | 2002

Transforming Growth Factor-β1 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins : A Central Pathway in Progressive Glomerulosclerosis

Mauro Abbate; Carla Zoja; Marina Morigi; Daniela Rottoli; Stefania Angioletti; Susanna Tomasoni; Cristina Zanchi; Lorena Longaretti; Roberta Donadelli; Giuseppe Remuzzi

Chronic diseases of the kidney have a progressive course toward organ failure. Common pathway mechanisms of progressive injury, irrespectively of the etiology of the underlying diseases, include glomerular capillary hypertension and enhanced passage of plasma proteins across the glomerular capillary barrier because of impaired permselective function. These changes are associated with podocyte injury and glomerular sclerosis. Direct evidence for causal roles is lacking, particularly for the link between intraglomerular protein deposition and sclerosing reaction. Because transforming growth factor-beta1 (TGF-beta1) is the putative central mediator of scarring, we hypothesized that TGF-beta1 can be up-regulated by protein overload of podocytes thereby contributing to sclerosis. In rats with renal mass reduction, protein accumulation in podocytes as a consequence of enhanced transcapillary passage preceded podocyte dedifferentiation and injury, increase in TGF-beta1 expression in podocytes, and TGF-beta1-dependent activation of mesangial cells. Angiotensin-converting enzyme inhibitor prevented both accumulation of plasma proteins and TGF-beta1 overexpression in podocytes and sclerosis. Albumin load on podocytes in vitro caused loss of the synaptopodin differentiation marker and enhanced TGF-beta1 mRNA and protein. Conditioned medium of albumin-stimulated podocytes induced a sclerosing phenotype in mesangial cells, an effect mimicked by TGF-beta1 and blocked by anti-TGF-beta1 antibodies. Thus, the passage of excess plasma proteins across the glomerular capillary wall is the trigger of podocyte dysfunction and of a TGF-beta1-mediated mechanism underlying sclerosis. Agents to reduce TGF-beta1, possibly combined with angiotensin blockade, should have priority in novel approaches to treatment of progressive nephropathies.


Stem Cells | 2009

Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury

Marina Morigi; Cinzia Rota; Tiziana Montemurro; Elisa Montelatici; Viviana Lo Cicero; Barbara Imberti; Mauro Abbate; Carla Zoja; Paola Cassis; Lorena Longaretti; Paolo Rebulla; Martino Introna; Chiara Capelli; Ariela Benigni; Giuseppe Remuzzi; Lorenza Lazzari

In search for new sources of mesenchymal stem cells (MSCs) for renal repair in acute kidney injury (AKI), we investigated the potential of human cord blood (CB)‐MSCs to cure mice with AKI. Infusion of CB‐MSCs in immunodeficient mice with cisplatin‐induced AKI ameliorated both renal function and tubular cell injury, and prolonged survival. Transplanted CB‐MSCs localized in peritubular areas, limited capillary alterations and neutrophil infiltration. Apoptosis reduced and tubular cell proliferation increased by virtue of stem cell capacity to produce growth factors. The reno‐protective effect of CB‐MSCs was further confirmed by their ability to inhibit oxidative damage and to induce the prosurvival factor Akt in tubular cells. The evidence that CB‐MSCs in vitro increased the production of growth factors and inhibited IL‐1β and TNFα synthesis when cocultured with damaged proximal tubular cells indicates a regenerative and anti‐inflammatory action of stem cell treatment. Altogether these results highlight the potential of human CB‐MSCs as future cell therapy for testing in human AKI. STEM CELLS 2010;28:513–522


American Journal of Pathology | 2005

In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: Implication for permselective dysfunction of chronic nephropathies

Marina Morigi; Simona Buelli; Stefania Angioletti; Cristina Zanchi; Lorena Longaretti; Carla Zoja; Miriam Galbusera; Sara Gastoldi; Peter Mundel; Giuseppe Remuzzi; Ariela Benigni

Effacement of podocyte foot processes occurs in many proteinuric nephropathies and is accompanied by rearrangement of the actin cytoskeleton. Here, we studied whether protein overload affects intracellular pathways, leading to cytoskeletal architecture changes and ultimately to podocyte dysfunction. Mouse podocytes bound and endocytosed both albumin and IgG via receptor-specific mechanisms. Protein overload caused redistribution of F-actin fibers instrumental to up-regulation of the prepro-endothelin (ET)-1 gene and production of the corresponding peptide. Increased DNA-binding activity for nuclear factor (NF)-kappaB and Ap-1 nuclear proteins was measured in nuclear extracts of podocytes exposed to excess proteins. Both Y27632, which inhibits Rho kinase-dependent stress fiber formation, and jasplakinolide, an F-actin stabilizer, decreased NF-kappaB and Ap-1 activity and reduced ET-1 expression. This suggested a role for the cytoskeleton, through activated Rho, in the regulation of the ET-1 peptide. Focal adhesion kinase (FAK), an integrin-associated nonreceptor tyrosine kinase, was phosphorylated by albumin treatment via Rho kinase-triggered actin reorganization. FAK activation led to NF-kappaB- and Ap-1-dependent ET-1 expression. These data suggest that reorganization of the actin cytoskeletal network in response to protein load is implicated in modulation of the ET-1 gene via Rho kinase-dependent FAK activation of NF-kappaB and Ap-1 in differentiated podocytes. Increased ET-1 generation might alter glomerular permselectivity and amplify the noxious effect of protein overload on dysfunctional podocytes.


Pediatric Nephrology | 2010

Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction.

Carla Zoja; Simona Buelli; Marina Morigi

Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli O157:H7 has become a global threat to public health, as a primary cause of a worldwide spread of hemorrhagic colitis complicated by diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure that mainly affects early childhood. Endothelial dysfunction has been recognized as the trigger event in the development of microangiopathic processes. Endothelial cells, mainly those located in the renal microvasculature, are primary targets of the toxic effects of Stx1 and 2. Stxs bound to their specific globotriaosylceramide (Gb3Cer) receptor on the cell surface trigger a cascade of signaling events, involving NF-κB activation, that induce expression of genes encoding for adhesion molecules and chemokines, and culminate in the adhesion of leukocytes to endothelial cells, thereby increasing the endothelial susceptibility to leukocyte-mediated injury. Activated endothelial cells in response to Stxs lose the normal thromboresistance phenotype and become thrombogenic, initiating microvascular thrombus formation. Evidence is emerging that complement activation in response to Stxs favors platelet thrombus formation on endothelial cells, which may play a role in amplifying the inflammation–thrombosis circuit in Stx-associated HUS.


Journal of The American Society of Nephrology | 2012

In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions

Christodoulos Xinaris; Valentina Benedetti; Paola Rizzo; Mauro Abbate; Daniela Corna; Nadia Azzollini; Sara Conti; Mathieu Unbekandt; Jamie A. Davies; Marina Morigi; Ariela Benigni; Giuseppe Remuzzi

The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.


American Journal of Transplantation | 2012

Localization of Mesenchymal Stromal Cells Dictates Their Immune or Proinflammatory Effects in Kidney Transplantation

Federica Casiraghi; Nadia Azzollini; Marta Todeschini; Regiane Aparecida Cavinato; Paola Cassis; Samantha Solini; Cinzia Rota; Marina Morigi; M. Introna; R. Maranta; Norberto Perico; G. Remuzzi; Marina Noris

Multipotent mesenchymal stromal cells (MSC) have recently emerged as promising candidates for cell‐based immunotherapy in solid‐organ transplantation. However, optimal conditions and settings for fully harnessing MSC tolerogenic properties need to be defined. We recently reported that autologous MSC given posttransplant in kidney transplant patients was associated with transient renal insufficiency associated with intragraft recruitment of neutrophils and complement C3 deposition. Here, we moved back to a murine kidney transplant model with the aim to define the best timing of MSC infusion capable of promoting immune tolerance without negative effects on early graft function. We also investigated the mechanisms of the immunomodulatory and/or proinflammatory activities of MSC according to whether cells were given before or after transplant. Posttransplant MSC infusion in mice caused premature graft dysfunction and failed to prolong graft survival. In this setting, infused MSC localized mainly into the graft and associated with neutrophils and complement C3 deposition. By contrast, pretransplant MSC infusion induced a significant prolongation of kidney graft survival by a Treg‐dependent mechanism. MSC‐infused pretransplant localized into lymphoid organs where they promoted early expansion of Tregs. Thus, pretransplant MSC infusion may be a useful approach to fully exploit their immunomodulatory properties in kidney transplantation.

Collaboration


Dive into the Marina Morigi's collaboration.

Top Co-Authors

Avatar

Giuseppe Remuzzi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Carla Zoja

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Ariela Benigni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Barbara Imberti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Abbate

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Simona Buelli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cinzia Rota

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cristina Zanchi

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Stefania Angioletti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge