Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Gleichweit is active.

Publication


Featured researches published by Christoph Gleichweit.


ACS Catalysis | 2014

Model Catalytic Studies of Liquid Organic Hydrogen Carriers: Dehydrogenation and Decomposition Mechanisms of Dodecahydro-N-ethylcarbazole on Pt(111)

Max Amende; Christoph Gleichweit; Kristin Werner; Stefan Schernich; Wei Zhao; Michael P. A. Lorenz; Oliver Höfert; Christian Papp; Marcus Koch; Peter Wasserscheid; Mathias Laurin; Hans-Peter Steinrück; Jörg Libuda

Liquid organic hydrogen carriers (LOHC) are compounds that enable chemical energy storage through reversible hydrogenation. They are considered a promising technology to decouple energy production and consumption by combining high-energy densities with easy handling. A prominent LOHC is N-ethylcarbazole (NEC), which is reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). We studied the reaction of H12-NEC on Pt(111) under ultrahigh vacuum (UHV) conditions by applying infrared reflection–absorption spectroscopy, synchrotron radiation-based high resolution X-ray photoelectron spectroscopy, and temperature-programmed molecular beam methods. We show that molecular adsorption of H12-NEC on Pt(111) occurs at temperatures between 173 and 223 K, followed by initial C–H bond activation in direct proximity to the N atom. As the first stable dehydrogenation product, we identify octahydro-N-ethylcarbazole (H8-NEC). Dehydrogenation to H8-NEC occurs slowly between 223 and 273 K and much faster above 273 K. Stepwise dehydrogenation to NEC proceeds while heating to 380 K. An undesired side reaction, C–N bond scission, was observed above 390 K. H8-NEC and H8-carbazole are the dominant products desorbing from the surface. Desorption occurs at higher temperatures than H8-NEC formation. We show that desorption and dehydrogenation activity are directly linked to the number of adsorption sites being blocked by reaction intermediates.


Chemistry: A European Journal | 2013

Dehydrogenation Mechanism of Liquid Organic Hydrogen Carriers: Dodecahydro‐N‐ethylcarbazole on Pd(111)

Max Amende; Stefan Schernich; Marek Sobota; Ioannis Nikiforidis; Wolfgang Hieringer; Daniel Assenbaum; Christoph Gleichweit; Hans-Jörg Drescher; Christian Papp; Hans-Peter Steinrück; Andreas Görling; Peter Wasserscheid; Mathias Laurin; Jörg Libuda

Dodecahydro-N-ethylcarbazole (H12-NEC) has been proposed as a potential liquid organic hydrogen carrier (LOHC) for chemical energy storage, as it combines both favourable physicochemical and thermodynamic properties. The design of optimised dehydrogenation catalysts for LOHC technology requires a detailed understanding of the reaction pathways and the microkinetics. Here, we investigate the dehydrogenation mechanism of H12-NEC on Pd(111) by using a surface-science approach under ultrahigh vacuum conditions. By combining infrared reflection-absorption spectroscopy, density functional theory calculations and X-ray photoelectron spectroscopy, surface intermediates and their stability are identified. We show that H12-NEC adsorbs molecularly up to 173 K. Above this temperature (223 K), activation of C-H bonds is observed within the five-membered ring. Rapid dehydrogenation occurs to octahydro-N-ethylcarbazole (H8-NEC), which is identified as a stable surface intermediate at 223 K. Above 273 K, further dehydrogenation of H8-NEC proceeds within the six-membered rings. Starting from clean Pd(111), C-N bond scission, an undesired side reaction, is observed above 350 K. By complementing surface spectroscopy, we present a temperature-programmed molecular beam experiment, which permits direct observation of dehydrogenation products in the gas phase during continuous dosing of the LOHC. We identify H8-NEC as the main product desorbing from Pd(111). The onset temperature for H8-NEC desorption is 330 K, the maximum reaction rate is reached around 550 K. The fact that preferential desorption of H8-NEC is observed even above the temperature threshold for H8-NEC dehydrogenation on the clean surface is attributed to the presence of surface dehydrogenation and decomposition products during continuous reactant exposure.


Chemistry: A European Journal | 2015

Reversible Hydrogenation of Graphene on Ni(111)—Synthesis of “Graphone”

Wei Zhao; Julian Gebhardt; Florian Späth; Karin Gotterbarm; Christoph Gleichweit; Hans-Peter Steinrück; Andreas Görling; Christian Papp

Understanding the adsorption and reaction between hydrogen and graphene is of fundamental importance for developing graphene-based concepts for hydrogen storage and for the chemical functionalization of graphene by hydrogenation. Recently, theoretical studies of single-sided hydrogenated graphene, so called graphone, predicted it to be a promising semiconductor for applications in graphene-based electronics. Here, we report on the synthesis of graphone bound to a Ni(111) surface. We investigate the formation process by X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and density-functional theory calculations, showing that the hydrogenation of graphene with atomic hydrogen indeed leads to graphone, that is, a hydrogen coverage of 1 ML (4.2 wt %). The dehydrogenation of graphone reveals complex desorption processes that are attributed to coverage-dependent changes in the activation energies for the associative desorption of hydrogen as molecular H2 .


Chemsuschem | 2013

Dehydrogenation of Dodecahydro‐N‐ethylcarbazole on Pt(111)

Christoph Gleichweit; Max Amende; Stefan Schernich; Wei Zhao; Michael P. A. Lorenz; Oliver Höfert; Nicole Brückner; Peter Wasserscheid; Jörg Libuda; Hans-Peter Steinrück; Christian Papp

Sloshing hydrogen: Liquid organic hydrogen carriers are high-boiling organic molecules, which can be reversibly hydrogenated and dehydrogenated in catalytic processes and are, therefore, a promising chemical hydrogen storage material. One of the promising candidates is the pair N-ethylcarbazole/perhydro-N-ethylcarbazole (NEC/H₁₂-NEC). The dehydrogenation and possible side reactions on a Pt(111) surface are evaluated in unprecedented detail.


Journal of Physical Chemistry Letters | 2014

Size and Structure Effects Controlling the Stability of the Liquid Organic Hydrogen Carrier Dodecahydro-N-ethylcarbazole during Dehydrogenation over Pt Model Catalysts.

Max Amende; Christoph Gleichweit; Stefan Schernich; Oliver Höfert; Michael P. A. Lorenz; Wei Zhao; Marcus Koch; Katharina Obesser; Christian Papp; Peter Wasserscheid; Hans-Peter Steinrück; Jörg Libuda

Hydrogen can be stored conveniently using so-called liquid organic hydrogen carriers (LOHCs), for example, N-ethylcarbazole (NEC), which can be reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). In this study, we focus on the dealkylation of H12-NEC, an undesired side reaction, which competes with dehydrogenation. The structural sensivity of dealkylation was studied by high-resolution X-ray photoelectron spectroscopy (HR-XPS) on Al2O3-supported Pt model catalysts and Pt(111) single crystals. We show that the morphology of the Pt deposit strongly influences LOHC degradation via C-N bond breakage. On smaller, defect-rich Pt particles, the onset of dealkylation is shifted by 90 K to lower temperatures as compared to large, well-shaped particles and well-ordered Pt(111). We attribute these effects to a reduced activation barrier for C-N bond breakage at low-coordinated Pt sites, which are abundant on small Pt aggregates but are rare on large particles and single crystal surfaces.


Journal of Physics: Condensed Matter | 2013

Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study

Wei Zhao; Julian Gebhardt; Karin Gotterbarm; Oliver Höfert; Christoph Gleichweit; Christian Papp; Andreas Görling; Hans-Peter Steinrück

The intercalation of a graphene layer adsorbed on a metal surface by gold or other metals is a standard procedure. While it was previously shown that pristine, i.e., undoped, and nitrogen-doped graphene sheets can be decoupled from a nickel substrate by intercalation with gold atoms in order to produce quasi-free-standing graphene, we find the gold intercalation behavior for boron-doped graphene on a Ni(111) surface to be more complex: for low boron contents (2-5%) in the graphene lattice only partial gold intercalation occurs and for higher boron contents (up to 20%) no intercalation is observed. In order to understand this different behavior, a density functional theory investigation is carried out, comparing undoped as well as substitutional nitrogen- and boron-doped graphene on Ni(111). We identify the stronger binding of the boron atoms to the nickel substrate as the factor responsible for the different intercalation behavior in the case of boron doping. However, the calculations predict that this energetic effect prevents the intercalation process only for large boron concentrations and that it can be overcome for smaller boron coverages, in line with our x-ray photoelectron spectroscopy experiments.


Journal of Chemical Physics | 2014

Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

Christoph Gleichweit; Max Amende; Udo Bauer; Stefan Schernich; Oliver Höfert; Michael P. A. Lorenz; Wei Zhao; Michael Müller; Marcus Koch; Philipp Bachmann; Peter Wasserscheid; Jörg Libuda; Hans-Peter Steinrück; Christian Papp

The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.


Review of Scientific Instruments | 2013

Ultrafast x-ray photoelectron spectroscopy in the microsecond time domain

Oliver Höfert; Christoph Gleichweit; Hans-Peter Steinrück; Christian Papp

We introduce a new approach for ultrafast in situ high-resolution X-ray photoelectron spectroscopy (XPS) to study surface processes and reaction kinetics on the microsecond timescale. The main idea is to follow the intensity at a fixed binding energy using a commercial 7 channeltron electron analyzer with a modified signal processing setup. This concept allows for flexible switching between measuring conventional XP spectra and ultrafast XPS. The experimental modifications are described in detail. As an example, we present measurements for the adsorption and desorption of CO on Pt(111), performed at the synchrotron radiation facility BESSY II, with a time resolution of 500 μs. Due to the ultrafast measurements, we are able to follow adsorption and desorption in situ at pressures of 2 × 10(-6) mbar and temperatures up to 500 K. The data are consistently analyzed using a simple model in line with data obtained with conventional fast XPS at temperatures below 460 K. Technically, our new approach allows measurement on even shorter timescales, down to 20 μs.


Physical Chemistry Chemical Physics | 2013

Growth and oxidation of graphene on Rh(111)

Karin Gotterbarm; Wei Zhao; Oliver Höfert; Christoph Gleichweit; Christian Papp; Hans-Peter Steinrück


Journal of Physical Chemistry C | 2015

Surface Reactions of Dicyclohexylmethane on Pt(111)

Christoph Gleichweit; Max Amende; Oliver Höfert; Tao Xu; Florian Späth; Nicole Brückner; Peter Wasserscheid; Jörg Libuda; Hans-Peter Steinrück; Christian Papp

Collaboration


Dive into the Christoph Gleichweit's collaboration.

Top Co-Authors

Avatar

Christian Papp

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Hans-Peter Steinrück

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Oliver Höfert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Wei Zhao

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Florian Späth

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Karin Gotterbarm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Max Amende

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jörg Libuda

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter Wasserscheid

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Udo Bauer

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge