Christophe Beauloye
Cliniques Universitaires Saint-Luc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Beauloye.
Current Biology | 2000
Anne-Sophie Marsin; Luc Bertrand; Mark H. Rider; Johan Deprez; Christophe Beauloye; M F Vincent; G Van den Berghe; David Carling; Louis Hue
BACKGROUND The role of protein phosphorylation in the Pasteur effect--the phenomenon whereby anaerobic conditions stimulate glycolysis--has not been addressed. The AMP-activated protein kinase (AMPK) is activated when the oxygen supply is restricted. AMPK acts as an energy-state sensor and inhibits key biosynthetic pathways, thus conserving ATP. Here, we studied whether AMPK is involved in the Pasteur effect in the heart by phosphorylating and activating 6-phosphofructo-2-kinase (PFK-2), the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. RESULTS Heart PFK-2 was phosphorylated on Ser466 and activated by AMPK in vitro. In perfused rat hearts, anaerobic conditions or inhibitors of oxidative phosphorylation (oligomycin and antimycin) induced AMPK activation, which correlated with PFK-2 activation and with an increase in fructose 2,6-bisphosphate concentration. Moreover, in cultured cells transfected with heart PFK-2, oligomycin treatment resulted in a parallel activation of endogenous AMPK and PFK-2. In these cells, the activation of PFK-2 was due to the phosphorylation of Ser466. A dominant-negative construct of AMPK abolished the activation of endogenous and cotransfected AMPK, and prevented both the activation and phosphorylation of transfected PFK-2 by oligomycin. CONCLUSIONS AMPK phosphorylates and activates heart PFK-2 in vitro and in intact cells. AMPK-mediated PFK-2 activation is likely to be involved in the stimulation of heart glycolysis during ischaemia.
Frontiers in Bioscience | 2009
Benoit Viollet; Yoni Athea; Rémi Mounier; Bruno Guigas; Elham Zarrinpashneh; Sandrine Horman; Louise Lantier; Sophie Hébrard; Jocelyne Devin-Leclerc; Christophe Beauloye; Marc Foretz; Fabrizio Andreelli; Renée Ventura-Clapier; Luc Bertrand
AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, has been proposed to function as a fuel gauge to monitor cellular energy status in response to nutritional environmental variations. AMPK system is a regulator of energy balance that, once activated by low energy status, switches on ATP-producing catabolic pathways (such as fatty acid oxidation and glycolysis), and switches off ATP-consuming anabolic pathways (such as lipogenesis), both by short-term effect on phosphorylation of regulatory proteins and by long-term effect on gene expression. Numerous observations obtained with pharmacological activators and agents that deplete intracellular ATP have been supportive of AMPK playing a role in the control of energy metabolism but none of these studies have provided conclusive evidence. Relatively recent developments in our understanding of precisely how AMPK complexes might operate to control energy metabolism is due in part to the development of transgenic and knockout mouse models. Although there are inevitable caveats with genetic models, some important findings have emerged. In the present review, we discuss recent findings obtained from animal models with inhibition or activation of AMPK signaling pathway.
FEBS Letters | 2002
Delphine Meisse; Mark Van de Casteele; Christophe Beauloye; Isabelle Hainault; Benjamin Ate Kefas; Mark H. Rider; Fabienne Foufelle; Louis Hue
The aim of this work was to study the effect of a sustained activation of AMP‐activated protein kinase (AMPK) on liver cell survival. AMPK activation was achieved by incubating FTO2B cells with AICA‐riboside, which is transformed into ZMP, an AMP analogue, or by adenoviral transfection of hepatocytes with a constitutively active form of AMPK. Prolonged AMPK activation triggered apoptosis and activated c‐Jun N‐terminal kinase (JNK) and caspase‐3. Experiments with iodotubercidin, dicoumarol and z‐VAD‐fmk, which inhibited AMPK, JNK and caspase activation, respectively, supported the notion that prolonged AMPK activation in liver cells induces apoptosis through an activation pathway that involves JNK and caspase‐3.
Cardiovascular Research | 2008
Luc Bertrand; Sandrine Horman; Christophe Beauloye; Jean-Louis Vanoverschelde
The main role of insulin in the heart under physiological conditions is obviously the regulation of substrate utilization. Indeed, insulin promotes glucose uptake and its utilization via glycolysis. In addition, insulin participates in the regulation of long-chain fatty acid uptake, protein synthesis, and vascular tonicity. Significant advancements have been made over the last 20 years in the understanding of the signal transduction elements involved in these insulin effects. Among these molecular mechanisms, the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway is thought to play a crucial role. Under pathological conditions, such as type-2 diabetes, myocardial ischaemia, and cardiac hypertrophy, insulin signal transduction pathways and action are clearly modified. These molecular signalling alterations are often linked to atypical crosstalks with other signal transduction pathways. On the other hand, pharmacological modifications of parallel and interdependent signalling components, such as the AMP-activated protein kinase pathway, are now considered to be a good therapeutic approach to treat insulin-signalling defects such as insulin resistance and type-2 diabetes. In this review, we will focus on the description of the molecular signalling elements involved in insulin action in the heart and vasculature under these different physiological, pathological, and therapeutical conditions.
Cardiovascular Research | 2011
Christophe Beauloye; Luc Bertrand; Sandrine Horman; Louis Hue
Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
FEBS Letters | 2001
Christophe Beauloye; Anne-Sophie Marsin; Luc Bertrand; Ulrike Krause; D. Grahame Hardie; Jean-Louis Vanoverschelde; Louis Hue
AMP‐activated protein kinase (AMPK) is known to be activated by phosphorylation on Thr172 in response to an increased AMP/ATP ratio. We report here that such an activation indeed occurred in anaerobic rat hearts and that it was antagonized (40–50%) when the hearts were pre‐treated with 100 nM insulin. The effect of insulin (1) was blocked by wortmannin, an inhibitor of phosphatidylinositol‐3‐kinase; (2) only occurred when insulin was added before anoxia, suggesting a hierarchical control; (3) resulted in a decreased phosphorylation state of Thr172 in AMPK and (4) was unrelated to changes in the AMP/ATP ratio. This is the first demonstration that AMPK activity could be changed without a detectable change in the AMP/ATP ratio of the cardiac cell.
Journal of Biological Chemistry | 2008
Sandrine Horman; Nicole Morel; Didier Vertommen; Nusrat Hussain; Dietbert Neumann; Christophe Beauloye; Nicole El Najjar; Christelle Forcet; Benoit Viollet; Michael P. Walsh; Louis Hue; Mark H. Rider
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser815. Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-β, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-β inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which α1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.
Circulation | 2014
Catharina Belge; Johanna Hammond; Emilie Dubois-Deruy; Boris Manoury; Julien Hamelet; Christophe Beauloye; Andreas Markl; Anne-Catherine Pouleur; Luc Bertrand; Hrag Esfahani; Karima Jnaoui; Konrad R. Götz; Viacheslav O. Nikolaev; Annelies Vanderper; Paul Herijgers; Irina Lobysheva; Guido Iaccarino; Denise Hilfiker-Kleiner; Geneviève Tavernier; Dominique Langin; Chantal Dessy; Jean-Luc Balligand
Background— &bgr;1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. &bgr;3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. Methods and Results— Mice with cardiac myocyte-specific expression of human &bgr;3-AR (&bgr;3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). &bgr;3-TG and WT had similar morphometric and hemodynamic parameters at baseline. &bgr;3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in &bgr;3-TG mice, which also had less re-expression of fetal genes and transforming growth factor &bgr;1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of &bgr;3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, &bgr;3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. Conclusions— Cardiac-specific overexpression of &bgr;3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac &bgr;3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling.
Cardiovascular Research | 2011
Magali Balteau; Nicolas Tajeddine; Carole de Meester; Audrey Ginion; Christine Des Rosiers; Nathan R. Brady; Caroline Sommereyns; Sandrine Horman; Jean-Louis Vanoverschelde; Philippe Gailly; Louis Hue; Luc Bertrand; Christophe Beauloye
AIMS Exposure to high glucose (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase in cardiomyocytes, but the underlying mechanism remains elusive. In this study, we have dissected the link between glucose transport and metabolism and NADPH oxidase activation under hyperglycaemic conditions. METHODS AND RESULTS Primary cultures of adult rat cardiomyocytes were exposed to HG concentration (HG, 21 mM) and compared with the normal glucose level (LG, 5 mM). HG exposure activated Rac1GTP and induced p47phox translocation to the plasma membrane, resulting in NADPH oxidase (NOX2) activation, increased ROS production, insulin resistance, and eventually cell death. Comparison of the level of O-linked N-acetylglucosamine (O-GlcNAc) residues in LG- and HG-treated cells did not reveal any significant difference. Inhibition of the pentose phosphate pathway (PPP) by 6-aminonicotinamide counteracted ROS production in response to HG but did not prevent Rac-1 upregulation and p47phox translocation leading to NOX2 activation. Modulation of glucose uptake barely affected oxidative stress and toxicity induced by HG. More interestingly, non-metabolizable glucose analogues (i.e. 3-O-methyl-D-glucopyranoside and α-methyl-D-glucopyranoside) reproduced the toxic effect of HG. Inhibition of the sodium/glucose cotransporter SGLT1 by phlorizin counteracted HG-induced NOX2 activation and ROS production. CONCLUSION Increased glucose metabolism by itself does not trigger NADPH oxidase activation, although PPP is required to provide NOX2 with NADPH and to produce ROS. NOX2 activation results from glucose transport through SGLT1, suggesting that an extracellular metabolic signal transduces into an intracellular ionic signal.
Circulation Research | 2001
Christophe Beauloye; Luc Bertrand; Ulrike Krause; Anne-Sophie Marsin; Tom Dresselaers; Florent Vanstapel; Jean-Louis Vanoverschelde; Louis Hue
Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).