Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luc Bertrand is active.

Publication


Featured researches published by Luc Bertrand.


Current Biology | 2000

Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia.

Anne-Sophie Marsin; Luc Bertrand; Mark H. Rider; Johan Deprez; Christophe Beauloye; M F Vincent; G Van den Berghe; David Carling; Louis Hue

BACKGROUND The role of protein phosphorylation in the Pasteur effect--the phenomenon whereby anaerobic conditions stimulate glycolysis--has not been addressed. The AMP-activated protein kinase (AMPK) is activated when the oxygen supply is restricted. AMPK acts as an energy-state sensor and inhibits key biosynthetic pathways, thus conserving ATP. Here, we studied whether AMPK is involved in the Pasteur effect in the heart by phosphorylating and activating 6-phosphofructo-2-kinase (PFK-2), the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, a potent stimulator of glycolysis. RESULTS Heart PFK-2 was phosphorylated on Ser466 and activated by AMPK in vitro. In perfused rat hearts, anaerobic conditions or inhibitors of oxidative phosphorylation (oligomycin and antimycin) induced AMPK activation, which correlated with PFK-2 activation and with an increase in fructose 2,6-bisphosphate concentration. Moreover, in cultured cells transfected with heart PFK-2, oligomycin treatment resulted in a parallel activation of endogenous AMPK and PFK-2. In these cells, the activation of PFK-2 was due to the phosphorylation of Ser466. A dominant-negative construct of AMPK abolished the activation of endogenous and cotransfected AMPK, and prevented both the activation and phosphorylation of transfected PFK-2 by oligomycin. CONCLUSIONS AMPK phosphorylates and activates heart PFK-2 in vitro and in intact cells. AMPK-mediated PFK-2 activation is likely to be involved in the stimulation of heart glycolysis during ischaemia.


Current Biology | 2002

Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis

Sandrine Horman; Gareth J. Browne; Ulrike Krause; Jigna V. Patel; Didier Vertommen; Luc Bertrand; A. Lavoinne; Louis Hue; Christopher G. Proud; Mark H. Rider

Protein synthesis, in particular peptide-chain elongation, consumes cellular energy. Anoxia activates AMP-activated protein kinase (AMPK, see ), resulting in the inhibition of biosynthetic pathways to conserve ATP. In anoxic rat hepatocytes or in hepatocytes treated with 5-aminoimidazole-4-carboxamide (AICA) riboside, AMPK was activated and protein synthesis was inhibited. The inhibition of protein synthesis could not be explained by changes in the phosphorylation states of initiation factor 4E binding protein-1 (4E-BP1) or eukaryotic initiation factor 2alpha (eIF2alpha). However, the phosphorylation state of eukaryotic elongation factor 2 (eEF2) was increased in anoxic and AICA riboside-treated hepatocytes and in AICA riboside-treated CHO-K1 cells, and eEF2 phosphorylation is known to inhibit its activity. Incubation of CHO-K1 cells with increasing concentrations of 2-deoxyglucose suggested that the mammalian target of the rapamycin (mTOR) signaling pathway did not play a major role in controlling the level of eEF2 phosphorylation in response to mild ATP depletion. In HEK293 cells, transfection of a dominant-negative AMPK construct abolished the oligomycin-induced inhibition of protein synthesis and eEF2 phosphorylation. Lastly, eEF2 kinase, the kinase that phosphorylates eEF2, was activated in anoxic or AICA riboside-treated hepatocytes. Therefore, the activation of eEF2 kinase by AMPK, resulting in the phosphorylation and inactivation of eEF2, provides a novel mechanism for the inhibition of protein synthesis.


The Journal of Physiology | 2006

Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders

Benoit Viollet; Marc Foretz; Bruno Guigas; Sandrine Horman; Renaud Dentin; Luc Bertrand; Louis Hue; Fabrizio Andreelli

It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP‐activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP‐consuming pathways, both by short‐term effects on phosphorylation of regulatory proteins and by long‐term effects on gene expression. Activation of AMPK in the liver leads to the stimulation of fatty acid oxidation and inhibition of lipogenesis, glucose production and protein synthesis. Medical interest in the AMPK system has recently increased with the demonstration that AMPK could mediate some of the effects of the fat cell‐derived adiponectin and the antidiabetic drugs metformin and thiazolidinediones. These findings reinforce the idea that pharmacological activation of AMPK may provide, through signalling and metabolic and gene expression effects, a new strategy for the management of metabolic hepatic disorders linked to type 2 diabetes and obesity.


Cell Metabolism | 2014

Metformin: From Mechanisms of Action to Therapies

Marc Foretz; Bruno Guigas; Luc Bertrand; Michael Pollak; Benoit Viollet

Metformin is currently the first-line drug treatment for type 2 diabetes. Besides its glucose-lowering effect, there is interest in actions of the drug of potential relevance to cardiovascular diseases and cancer. However, the underlying mechanisms of action remain elusive. Convincing data place energy metabolism at the center of metformins mechanism of action in diabetes and may also be of importance in cardiovascular diseases and cancer. Metformin-induced activation of the energy-sensor AMPK is well documented, but may not account for all actions of the drug. Here, we summarize current knowledge about the different AMPK-dependent and AMPK-independent mechanisms underlying metformin action.


Biochemical Journal | 2004

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis

Mark H. Rider; Luc Bertrand; Didier Vertommen; Paul A. M. Michels; Guy G. Rousseau; Louis Hue

Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.


Frontiers in Bioscience | 2009

AMPK : Lessons from transgenic and knockout animals.

Benoit Viollet; Yoni Athea; Rémi Mounier; Bruno Guigas; Elham Zarrinpashneh; Sandrine Horman; Louise Lantier; Sophie Hébrard; Jocelyne Devin-Leclerc; Christophe Beauloye; Marc Foretz; Fabrizio Andreelli; Renée Ventura-Clapier; Luc Bertrand

AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, has been proposed to function as a fuel gauge to monitor cellular energy status in response to nutritional environmental variations. AMPK system is a regulator of energy balance that, once activated by low energy status, switches on ATP-producing catabolic pathways (such as fatty acid oxidation and glycolysis), and switches off ATP-consuming anabolic pathways (such as lipogenesis), both by short-term effect on phosphorylation of regulatory proteins and by long-term effect on gene expression. Numerous observations obtained with pharmacological activators and agents that deplete intracellular ATP have been supportive of AMPK playing a role in the control of energy metabolism but none of these studies have provided conclusive evidence. Relatively recent developments in our understanding of precisely how AMPK complexes might operate to control energy metabolism is due in part to the development of transgenic and knockout mouse models. Although there are inevitable caveats with genetic models, some important findings have emerged. In the present review, we discuss recent findings obtained from animal models with inhibition or activation of AMPK signaling pathway.


Cardiovascular Research | 2008

Insulin signalling in the heart.

Luc Bertrand; Sandrine Horman; Christophe Beauloye; Jean-Louis Vanoverschelde

The main role of insulin in the heart under physiological conditions is obviously the regulation of substrate utilization. Indeed, insulin promotes glucose uptake and its utilization via glycolysis. In addition, insulin participates in the regulation of long-chain fatty acid uptake, protein synthesis, and vascular tonicity. Significant advancements have been made over the last 20 years in the understanding of the signal transduction elements involved in these insulin effects. Among these molecular mechanisms, the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway is thought to play a crucial role. Under pathological conditions, such as type-2 diabetes, myocardial ischaemia, and cardiac hypertrophy, insulin signal transduction pathways and action are clearly modified. These molecular signalling alterations are often linked to atypical crosstalks with other signal transduction pathways. On the other hand, pharmacological modifications of parallel and interdependent signalling components, such as the AMP-activated protein kinase pathway, are now considered to be a good therapeutic approach to treat insulin-signalling defects such as insulin resistance and type-2 diabetes. In this review, we will focus on the description of the molecular signalling elements involved in insulin action in the heart and vasculature under these different physiological, pathological, and therapeutical conditions.


Cardiovascular Research | 2011

AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure

Christophe Beauloye; Luc Bertrand; Sandrine Horman; Louis Hue

Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.


FEBS Letters | 2001

Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides.

Christophe Beauloye; Anne-Sophie Marsin; Luc Bertrand; Ulrike Krause; D. Grahame Hardie; Jean-Louis Vanoverschelde; Louis Hue

AMP‐activated protein kinase (AMPK) is known to be activated by phosphorylation on Thr172 in response to an increased AMP/ATP ratio. We report here that such an activation indeed occurred in anaerobic rat hearts and that it was antagonized (40–50%) when the hearts were pre‐treated with 100 nM insulin. The effect of insulin (1) was blocked by wortmannin, an inhibitor of phosphatidylinositol‐3‐kinase; (2) only occurred when insulin was added before anoxia, suggesting a hierarchical control; (3) resulted in a decreased phosphorylation state of Thr172 in AMPK and (4) was unrelated to changes in the AMP/ATP ratio. This is the first demonstration that AMPK activity could be changed without a detectable change in the AMP/ATP ratio of the cardiac cell.


Circulation Research | 2006

H11 Kinase Prevents Myocardial Infarction by Preemptive Preconditioning of the Heart

Christophe Depre; Li Wang; Xiangzhen Sui; Hongyu Qiu; Chull Hong; Nadia Hedhli; Audrey Ginion; Amy Shah; Michel Pelat; Luc Bertrand; Thomas E. Wagner; Vinciane Gaussin; Stephen F. Vatner

Ischemic preconditioning confers powerful protection against myocardial infarction through pre-emptive activation of survival signaling pathways, but it remains difficult to apply to patients with ischemic heart disease, and its effects are transient. Promoting a sustained activation of preconditioning mechanisms in vivo would represent a novel approach of cardioprotection. We tested the role of the protein H11 kinase (H11K), which accumulates by 4- to 6-fold in myocardium of patients with chronic ischemic heart disease and in experimental models of ischemia. This increased expression was quantitatively reproduced in cardiac myocytes using a transgenic (TG) mouse model. After 45 minutes of coronary artery occlusion and reperfusion, hearts from TG mice showed an 82±5% reduction in infarct size compared with wild-type (WT), which was similar to the 84±4% reduction of infarct size observed in WT after a protocol of ischemic preconditioning. Hearts from TG mice showed significant activation of survival kinases participating in preconditioning, including Akt and the 5′AMP-activated protein kinase (AMPK). H11K directly binds to both Akt and AMPK and promotes their nuclear translocation and their association in a multiprotein complex, which results in a stimulation of survival mechanisms in cytosol and nucleus, including inhibition of proapoptotic effectors (glycogen synthase kinase-3β, Bad, and Foxo), activation of antiapoptotic effectors (protein kinase C&egr;, endothelial and inducible NO synthase isoforms, and heat shock protein 70), increased expression of the hypoxia-inducible factor-1α, and genomic switch to glucose utilization. Therefore, activation of survival pathways by H11K preemptively triggers the antiapoptotic and metabolic response to ischemia and is sufficient to confer cardioprotection in vivo equally potent to preconditioning.

Collaboration


Dive into the Luc Bertrand's collaboration.

Top Co-Authors

Avatar

Christophe Beauloye

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Sandrine Horman

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Vanoverschelde

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Louis Hue

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Audrey Ginion

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Benoit Viollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J.-L. Vanoverschelde

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Magali Balteau

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Xavier Havaux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge