Christophe Pinte
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Pinte.
Astronomy and Astrophysics | 2007
J. Bouvier; Silvia H. P. Alencar; T. Boutelier; Catherine Dougados; Zoltan Balog; K. Grankin; Simon T. Hodgkin; Mansur A. Ibrahimov; M. Kun; T. Yu. Magakian; Christophe Pinte
Context. Accretion and ejection are complex and related processes that vary on various timescales in young stars. Aims. We intend to investigate the accretion and outflow dynamics and their interaction from observations of the classical T Tauri star AA Tau. Methods. From a long time series of high resolution (R = 115 000) HARPS spectra and simultaneous broad-band photometry, we report new evidence for magnetospheric accretion as well as ejection processes in the nearly edge-on classical T Tauri star AA Tau. Results. AA Tau’s light curve is modulated with a period of 8.22 d. The recurrent luminosity dips are due to the periodic occultation of the central star by the magnetically-warped inner disk edge located at about 9 R� . Balmer line profiles exhibit a clear rotational modulation of high-velocity redshifted absorption components with a period of 8.22 days as well, with a maximum strength when the main accretion funnel flow passes through the line of sight. At the same time, the luminosity of the system decreases by about 1 mag, indicative of circumstellar absorption of the stellar photosphere by the magnetically-warped, corotating inner disk edge. The photospheric and He I radial velocities also exhibit periodic variations, and the veiling is modulated by the appearance of the accretion shock at the bottom of the accretion funnel. Diagnostics of hot winds and their temporal behaviour are also presented. Conclusions. The peculiar geometry of the young AA Tau system (nearly edge-on) allows us to uniquely probe the acretion-ejection region close to the star. We find that most spectral and photometric diagnostics vary as expected from models of magneticallychannelled accretion in young stars, with a large scale magnetosphere tilted by 20 ◦ onto the star’s spin axis. We also find evidence for time variability of the magnetospheric accretion flow on a timescale of a few rotational periods.
Astronomy and Astrophysics | 2009
Christophe Pinte; Tim J. Harries; M. Min; Alan M. Watson; C. P. Dullemond; Peter Woitke; Francois Menard; María Carolina Durán-Rojas
Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration. We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures, spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 10^6, a sharp density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte Carlo codes compared to those of discrete ordinate codes. For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.
Astronomy and Astrophysics | 2008
Christophe Pinte; Deborah Lynne Padgett; Francois Menard; Karl R. Stapelfeldt; Glenn Schneider; J. Olofsson; Olja Panić; J.-C. Augereau; Gaspard Duchene; John E. Krist; Klaus M. Pontoppidan; Marshall D. Perrin; C. A. Grady; Jacqueline E. Kessler-Silacci; E. F. van Dishoeck; Dave Lommen; Murray D. Silverstone; Dean C. Hines; Sebastian Wolf; G. A. Blake; T. Henning; Bringfried Stecklum
Aims. We present a panchromatic study, involving a multiple technique approach, of the circumstellar disc surrounding the T Tauri star IM Lupi (Sz 82). Methods. We have undertaken a comprehensive observational study of IM Lupi using photometry, spectroscopy, millimetre interferometry and multi-wavelength imaging. For the first time, the disc is resolved from optical and near-infrared wavelengths in scattered light, to the millimetre regime in thermal emission. Our data-set, in conjunction with existing photometric data, provides an extensive coverage of the spectral energy distribution, including a detailed spectrum of the silicate emission bands. We have performed a simultaneous modelling of the various observations, using the radiative transfer code MCFOST, and analysed a grid of models over a large fraction of the parameter space via Bayesian inference. Results. We have constructed a model that can reproduce all of the observations of the disc. Our analysis illustrates the importance of combining a wide range of observations in order to fully constrain the disc model, with each observation providing a strong constraint only on some aspects of the disc structure and dust content. Quantitative evidence of dust evolution in the disc is obtained: grain growth up to millimetre-sized particles, vertical stratification of dust grains with micrometric grains close to the disc surface and larger grains which have settled towards the disc midplane, and possibly the formation of fluffy aggregates and/or ice mantles around grains.
The Astrophysical Journal | 2006
Glenn Schneider; Murray D. Silverstone; Dean C. Hines; J.-C. Augereau; Christophe Pinte; Francois Menard; John E. Krist; Mark Clampin; C. A. Grady; David A. Golimowski; D. R. Ardila; Thomas Henning; Sebastian Wolf; Jens Rodmann
HST NICMOS PSF-subtractedcoronagraphicobservationsof HD181327haverevealedthepresenceofaringlike disk of circumstellar debris seen in 1.1 � m light scattered by the disk grains, surrounded by a diffuse outer region of lower surface brightness. The annular disk appears to be inclined by 31N7 � 1N6 from face-on, with the disk major-axis P.A. at 107 � � 2 � . The total 1.1 � m flux density of the light scattered by the disk (at 1B2 < r < 5B0) of 9:6 � 0:8 mJy is 0:17% � 0:015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36AUwideannuluscenteredonthepeakoftheradialsurfacebrightness(SB)profile86:3 � 3:9AUfromthestar,well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities, assuming blackbody grains (� 22 AU). The 1.1 � m light scattered by the ring (1) appears bilaterally symmetric, (2) exhibits directionallypreferentialscatteringwellrepresentedbyaHenyey-Greensteinscatteringphasefunctionwith g HG ¼ 0:30 � 0:03, and (3) has a median SB (over all azimuth angles) at the 86.3 AU radius of peak SB of 1:00 � 0:07 mJy arcsec � 2 .N o photocentric offset is seen in the ring relative to the position of the central star. A low SB diffuse halo is seen in the NICMOS image to a distance of � 4 00 . Deeper 0.6 � m Hubble Space Telescope (HST) ACS PSF-subtracted coronagraphic observationsreveala faint (V � 21:5 mag arcsec � 2 ) outer nebulosityat4 00 < r < 9 00 , asymmetrically brighter to the north of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4Y8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of � 1 � mo f� 4MMoon. Subject headingg circumstellar matter — infrared: stars — planetary systems: protoplanetary disks — stars: individual (HD 181327)
Astronomy and Astrophysics | 2015
M. Benisty; A. Juhász; A. Boccaletti; H. Avenhaus; J. Milli; C. Thalmann; C. Dominik; P. Pinilla; Esther Buenzli; A. Pohl; J.-L. Beuzit; T. Birnstiel; J. de Boer; M. Bonnefoy; G. Chauvin; Valentin Christiaens; A. Garufi; C. A. Grady; T. Henning; N. Huélamo; Andrea Isella; M. Langlois; Francois Menard; David Mouillet; J. Olofsson; E. Pantin; Christophe Pinte; Laurent Pueyo
Context. The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk evolution. Aims. We aim to derive new constraints on the structure of the transition disk MWC 758, to detect non-axisymmetric features and understand their origin. Methods. We obtained infrared polarized intensity observations of the protoplanetary disk MWC 758 with SPHERE/VLT at 1.04 m to resolve scattered light at a smaller inner working angle (0.093 00 ) and a higher angular resolution (0.027 00 ) than previously achieved. Results. We observe polarized scattered light within 0.53 00 (148 au) down to the inner working angle (26 au) and detect distinct nonaxisymmetric features but no fully depleted cavity. The two small-scale spiral features that were previously detected with HiCIAO are resolved more clearly, and new features are identified, including two that are located at previously inaccessible radii close to the star. We present a model based on the spiral density wave theory with two planetary companions in circular orbits. The best model requires a high disk aspect ratio (H=r 0.20 at the planet locations) to account for the large pitch angles which implies a very warm disk. Conclusions. Our observations reveal the complex morphology of the disk MWC 758. To understand the origin of the detected features, the combination of high-resolution observations in the submillimeter with ALMA and detailed modeling is needed.
Astronomy and Astrophysics | 2016
Peter Woitke; M. Min; Christophe Pinte; Wing-Fai Thi; Inga Kamp; Ch. Rab; F. Anthonioz; S. Antonellini; C. Baldovin-Saavedra; A. Carmona; C. Dominik; Odysseas Dionatos; J. S. Greaves; M. Güdel; John David Ilee; A. Liebhart; Francois Menard; Laura Rigon; L. B. F. M. Waters; G. Aresu; R. Meijerink; M. Spaans
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine a number of key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
The Astrophysical Journal | 2015
Christophe Pinte; William R. F. Dent; Francois Menard; A. Hales; T. Hill; P. Cortes; I. de Gregorio-Monsalvo
The recent ALMA observations of the disc surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor 10 in the main gaps compared to the surrounding rings. Ring masses range from 10-100 M
Publications of the Astronomical Society of the Pacific | 2013
W. R. F. Dent; Wing-Fai Thi; I. Kamp; Jonathan P. Williams; Francois Menard; S. J. Andrews; D. R. Ardila; G. Aresu; J.-C. Augereau; D. Barrado y Navascués; Sean David Brittain; A. Carmona; David R. Ciardi; W. C. Danchi; Jessica Donaldson; G. Duchene; C. Eiroa; D. Fedele; C. A. Grady; I. de Gregorio-Molsalvo; Christian D. Howard; N. Huélamo; Alexander V. Krivov; J. Lebreton; R. Liseau; C. Martin-Zaidi; Geoffrey S. Mathews; G. Meeus; I. Mendigutia; B. Montesinos
_{\oplus}
Astronomy and Astrophysics | 2010
W. F. Thi; Geoffrey S. Mathews; Francois Menard; Peter Woitke; G. Meeus; Pablo Riviere-Marichalar; Christophe Pinte; Christian D. Howard; Aki Roberge; G. Sandell; Ilaria Pascucci; B. Riaz; C. A. Grady; W. R. F. Dent; Inga Kamp; Gaspard Duchene; J.-C. Augereau; E. Pantin; B. Vandenbussche; I. Tilling; Jonathan P. Williams; C. Eiroa; D. Barrado; J. M. Alacid; Sean M. Andrews; D. R. Ardila; G. Aresu; Sean David Brittain; David R. Ciardi; W. C. Danchi
in dust, and, we find that each of the deepest gaps is consistent with the removal of up to 40 M
The Astrophysical Journal | 2008
Christophe Pinte; Francois Menard; J. P. Berger; M. Benisty; Fabien Malbet
_{\oplus}