Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher B. Jackson is active.

Publication


Featured researches published by Christopher B. Jackson.


Molecular & Cellular Proteomics | 2013

Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology

Moritz Niemann; Sebastian Wiese; Jan Mani; Astrid Chanfon; Christopher B. Jackson; Christof Meisinger; Bettina Warscheid; André Schneider

Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.


Journal of Medical Genetics | 2014

Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency

Christopher B. Jackson; Jean-Marc Nuoffer; Dagmar Hahn; Holger Prokisch; Birgit Haberberger; Matthias Gautschi; Annemarie Häberli; Sabina Gallati; André Schaller

Background Defects of the mitochondrial respiratory chain complex II (succinate dehydrogenase (SDH) complex) are extremely rare. Of the four nuclear encoded proteins composing complex II, only mutations in the 70 kDa flavoprotein (SDHA) and the recently identified complex II assembly factor (SDHAF1) have been found to be causative for mitochondrial respiratory chain diseases. Mutations in the other three subunits (SDHB, SDHC, SDHD) and the second assembly factor (SDHAF2) have so far only been associated with hereditary paragangliomas and phaeochromocytomas. Recessive germline mutations in SDHB have recently been associated with complex II deficiency and leukodystrophy in one patient. Methods and results We present the clinical and molecular investigations of the first patient with biochemical evidence of a severe isolated complex II deficiency due to compound heterozygous SDHD gene mutations. The patient presented with early progressive encephalomyopathy due to compound heterozygous p.E69 K and p.*164Lext*3 SDHD mutations. Native polyacrylamide gel electrophoresis and western blotting demonstrated an impaired complex II assembly. Complementation of a patient cell line additionally supported the pathogenicity of the novel identified mutations in SDHD. Conclusions This report describes the first case of isolated complex II deficiency due to recessive SDHD germline mutations. We therefore recommend screening for all SDH genes in isolated complex II deficiencies. It further emphasises the importance of appropriate genetic counselling to the family with regard to SDHD mutations and their role in tumorigenesis.


Annals of clinical and translational neurology | 2015

Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement.

Tobias B. Haack; Christopher B. Jackson; Kei Murayama; Laura S. Kremer; André Schaller; Urania Kotzaeridou; Maaike C. de Vries; Gudrun Schottmann; Saikat Santra; Boriana Büchner; Thomas Wieland; Elisabeth Graf; Peter Freisinger; Seila Eggimann; Akira Ohtake; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Sascha Sauer; Yasin Memari; Anja Kolb-Kokocinski; Richard Durbin; Oswald Hasselmann; Kirsten Cremer; Beate Albrecht; Dagmar Wieczorek; Hartmut Engels; Dagmar Hahn; Alexander M. Zink

Short‐chain enoyl‐CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal‐recessive ECHS1 deficiency.


BMC Neurology | 2011

Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome

André Schaller; Dagmar Hahn; Christopher B. Jackson; Ilse Kern; Christophe Chardot; Dominique Charles Belli; Sabina Gallati; Jean-Marc Nuoffer

BackgroundDNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.MethodsmtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE.ResultsWe characterise a novel splice site mutation in POLG found in trans with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities.ConclusionsmtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore, POLG analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.


Clinical Chemistry | 2010

Quantitative 1-Step DNA Methylation Analysis with Native Genomic DNA as Template

Thomas von Kanel; Dominik Gerber; André Schaller; Alessandra Baumer; Eva Wey; Christopher B. Jackson; F.M. Gisler; Karl Heinimann; Sabina Gallati

BACKGROUND DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis. METHODS The assay is based on combining methylation-sensitive FastDigest(R) endonuclease digestion and quantitative real-time PCR (qPCR) in a single reaction. The first step consists of DNA digestion, followed by endonuclease inactivation and qPCR. The degree of DNA methylation is evaluated by comparing the quantification cycles of a reaction containing a methylation-sensitive endonuclease with the reaction of a sham mixture containing no endonuclease. Control reactions interrogating an unmethylated locus allow the detection and correction of artifacts caused by endonuclease inhibitors, while simultaneously permitting copy number assessment of the locus of interest. RESULTS With our novel approach, we correctly diagnosed the imprinting disorders Prader-Willi syndrome and Angelman syndrome in 35 individuals by measuring methylation levels and copy numbers for the SNRPN (small nuclear ribonucleoprotein polypeptide N) promoter. We also demonstrated that the proposed correction model significantly (P < 0.05) increases the assays accuracy with low-quality DNA, allowing analysis of DNA samples with decreased digestibility, as is often the case in retrospective studies. CONCLUSIONS Our novel DNA methylation assay reduces both the hands-on time and errors caused by handling and pipetting and allows methylation analyses to be completed within 90 min after DNA extraction. Combined with its precision and reliability, these features make the assay well suited for diagnostic procedures as well as high-throughput analyses.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance

Felix Schnarwiler; Moritz Niemann; Nicholas Doiron; Anke Harsman; Sandro Käser; Jan Mani; Astrid Chanfon; Caroline E. Dewar; Silke Oeljeklaus; Christopher B. Jackson; Mascha Pusnik; Oliver Schmidt; Chris Meisinger; Sebastian Hiller; Bettina Warscheid; Achim Schnaufer; Torsten Ochsenreiter; André Schneider

Significance During cell division mitochondria and their genomes need to be transmitted to the daughter cells. In the parasitic protozoa Trypansoma brucei we find a unique situation. It has a single mitochondrion with a single-unit genome that is physically connected to the flagellum. Here we identify the β-barrel mitochondrial outer membrane protein TAC40 that localizes to this connection. TAC40 is essential and defines a novel subclass of mitochondrial porins that are specialized in mitochondrial genome inheritance. A comparative analysis reveals a conserved concept of a mitochondrial DNA inheritance mechanism in trypanosomes and yeast that depends on a physical linkage between mitochondrial DNA and the cytoskeleton, which is organized around a β-barrel protein of the mitochondrial porin family. Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.


Biochemical and Biophysical Research Communications | 2012

qPCR-based mitochondrial DNA quantification: influence of template DNA fragmentation on accuracy.

Christopher B. Jackson; Sabina Gallati; André Schaller

Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.


European Journal of Pediatrics | 2016

A novel mutation in BCS1L associated with deafness, tubulopathy, growth retardation and microcephaly

Christopher B. Jackson; M F Bauer; André Schaller; Urania Kotzaeridou; Ferrarini A; Dagmar Hahn; H Chehade; Frédéric Barbey; Christel Tran; Sabina Gallati; Annemarie Haeberli; Sandra Eggimann; Luisa Bonafé; Jean-Marc Nuoffer

AbstractWe report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debré-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A>G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. Conclusion: Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period.What is Known:• Mutations in BCS1L cause mitochondrial complex III deficiencies.• Phenotypic presentations of defective BCS1L range from Bjornstad to neonatal GRACILE syndrome.What is New:• Description of a novel homozygous mutation in BCS1L with transient neonatal acidosis and persistent de Toni-Debré-Fanconi-type tubulopathy.• The long survival of patients with phenotypic presentation of severe complex III deficiency is uncommon.


British Journal of Ophthalmology | 2014

Novel mitochondrial tRNA(Ile) m.4282A>G gene mutation leads to chronic progressive external ophthalmoplegia plus phenotype.

Christopher B. Jackson; Christoph Neuwirth; Dagmar Hahn; Jean-Marc Nuoffer; Stephan Frank; Sabina Gallati; André Schaller

Background/aim To investigate the underlying pathomechanism in a 33-year-old female Caucasian patient presenting with chronic progressive external ophthalmoplegia (CPEO) plus symptoms. Methods Histochemical anaylsis of skeletal muscle and biochemical measurements of individual oxidative phosphorylation (OXPHOS) complexes. Genetic analysis of mitochondrial DNA in various tissues with subsequent investigation of single muscle fibres for correlation of mutational load. Results The patient’s skeletal muscle showed 20% of cytochrome c oxidase-negative fibres and 8% ragged-red fibres. Genetic analysis of the mitochondrial DNA revealed a novel point mutation in the mitochondrial tRNAIle (MTTI) gene at position m.4282G>A. The heteroplasmy was determined in blood, buccal cells and muscle by restriction fragment length polymorphism (RFLP) combined with a last fluorescent cycle. The total mutational load was 38% in skeletal muscle, but was not detectable in blood or buccal cells of the patient. The phenotype segregated with the mutational load as determined by analysis of single cytochrome c oxidase-negative/positive fibres by laser capture microdissection and subsequent LFC-RFLP. Conclusions We describe a novel MTTI transition mutation at nucleotide position m.4282G>A associated with a CPEO plus phenotype. The novel variant at position m.4282G>A disrupts the middle bond of the D-stem of the tRNAIle and is highly conserved. The conservation and phenotype-genotype segregation strongly suggest pathogenicity and is in good agreement with the MTTI gene being frequently associated with CPEO. This novel variant broadens the spectrum of MTTI mutations causing CPEO.


Neurogenetics | 2018

Defective mitochondrial ATPase due to rare mtDNA m.8969G>A mutation—causing lactic acidosis, intellectual disability, and poor growth

Pirjo Isohanni; Christopher J. Carroll; Christopher B. Jackson; Max Pohjanpelto; Tuula Lönnqvist; Anu Suomalainen

Mutations in mitochondrial ATP synthase 6 (MT-ATP6) are a frequent cause of NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) or Leigh syndromes, especially a point mutation at nucleotide position 8993. M.8969G>A is a rare MT-ATP6 mutation, previously reported only in three individuals, causing multisystem disorders with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia or IgA nephropathy. We present two siblings with the m.8969G>A mutation and a novel, substantially milder phenotype with lactic acidosis, poor growth, and intellectual disability. Our findings expand the phenotypic spectrum and show that mtDNA mutations should be taken account also with milder, stable phenotypes.

Collaboration


Dive into the Christopher B. Jackson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge