Christopher E. Ellison
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher E. Ellison.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Christopher E. Ellison; Charles B. Hall; David J. Kowbel; Juliet W. Welch; Rachel B. Brem; N. L. Glass; John W. Taylor
Elucidating the connection between genotype, phenotype, and adaptation in wild populations is fundamental to the study of evolutionary biology, yet it remains an elusive goal, particularly for microscopic taxa, which comprise the majority of life. Even for microbes that can be reliably found in the wild, defining the boundaries of their populations and discovering ecologically relevant phenotypes has proved extremely difficult. Here, we have circumvented these issues in the microbial eukaryote Neurospora crassa by using a “reverse-ecology” population genomic approach that is free of a priori assumptions about candidate adaptive alleles. We performed Illumina whole-transcriptome sequencing of 48 individuals to identify single nucleotide polymorphisms. From these data, we discovered two cryptic and recently diverged populations, one in the tropical Caribbean basin and the other endemic to subtropical Louisiana. We conducted high-resolution scans for chromosomal regions of extreme divergence between these populations and found two such genomic “islands.” Through growth-rate assays, we found that the subtropical Louisiana population has a higher fitness at low temperature (10 °C) and that several of the genes within these distinct regions have functions related to the response to cold temperature. These results suggest the divergence islands may be the result of local adaptation to the 9 °C difference in average yearly minimum temperature between these two populations. Remarkably, another of the genes identified using this unbiased, whole-genome approach is the well-known circadian oscillator frequency, suggesting that the 2.4°–10.6° difference in latitude between the populations may be another important environmental parameter.
Science | 2013
Christopher E. Ellison; Doris Bachtrog
Getting the Dosage Right As sex chromosomes evolve, they must compensate for differential gene dosage, especially in non-sex-specific genes. However, owing to the relative rarity of chromosomes that are in the process of becoming sex chromosomes, the ongoing evolutionary processes resulting in dosage compensation are unclear. Ellison and Bachtrog (p. 846; see the Perspective by Chuong and Feschotte) identified a specific transposable element involved in dosage compensation in males on the evolutionarily new neo-X chromosome of Drosophila miranda. A particular copy of this transposable element has been inserted at chromatin entry sites on the neo-X chromosome that favorably binds to the male-specific lethal complex, which in turn facilitates the spreading of chromatin silencing on a single chromosome to provide dosage compensation. Transposable elements facilitated functional specialization of recently evolved X chromosomes in fruit flies. [Also see Perspective by Chuong and Feschotte] Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use cis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.
Genetics | 2011
Christopher E. Ellison; Jason E. Stajich; David J. Jacobson; Donald O. Natvig; Alla Lapidus; Brian Foster; Andrea Aerts; Robert Riley; Erika Lindquist; Igor V. Grigoriev; John W. Taylor
A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.
Current Biology | 2011
Marcus Roper; Christopher E. Ellison; John W. Taylor; N. Louise Glass
Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal of asexual or sexual spores propagates individual nuclei in many of these species, selection acting at the level of nuclei creates the potential for competitive and cooperative genome dynamics. Recent work in Neurospora crassa and Sclerotinia sclerotiorum has illuminated how nuclear populations are coordinated for fungal growth and other behaviors and has revealed both molecular and physical mechanisms for preventing and policing inter-genomic conflict. Recent results from population-level genomic studies in a variety of filamentous fungi suggest that nuclear exchange between mycelia and recombination between heterospecific nuclei may be of more importance to fungal evolution, diversity and the emergence of newly virulent strains than has previously been recognized.
Molecular Ecology | 2015
Sara Branco; Pierre Gladieux; Christopher E. Ellison; Alan Kuo; Kurt LaButti; Anna Lipzen; Igor V. Grigoriev; Hui-Ling Liao; Rytas Vilgalys; Kabir G. Peay; John W. Taylor; Thomas D. Bruns
Fungi are an omnipresent and highly diverse group of organisms, making up a significant part of eukaryotic diversity. Little is currently known about the drivers of fungal population differentiation and subsequent divergence of species, particularly in symbiotic, mycorrhizal fungi. Here, we investigate the population structure and environmental adaptation in Suillus brevipes (Peck) Kuntze, a wind‐dispersed soil fungus that is symbiotic with pine trees. We assembled and annotated the reference genome for Su. brevipes and resequenced the whole genomes of 28 individuals from coastal and montane sites in California. We detected two clearly delineated coast and mountain populations with very low divergence. Genomic divergence was restricted to few regions, including a region of extreme divergence containing a gene encoding for a membrane Na+/H+ exchanger known for enhancing salt tolerance in plants and yeast. Our results are consistent with a very recent split between the montane and coastal Su. brevipes populations, with few small genomic regions under positive selection and a pattern of dispersal and/or establishment limitation. Furthermore, we identify a putatively adaptive gene that motivates further functional analyses to link genotypes and phenotypes and shed light on the genetic basis of adaptive traits.
PLOS Biology | 2013
Qi Zhou; Christopher E. Ellison; Vera B. Kaiser; Artyom A. Alekseyenko; Andrey A. Gorchakov; Doris Bachtrog
This study shows how young sex chromosomes have altered their chromatin structure in Drosophila, and what genomic changes have led to silencing of the Y, and hyper-transcription of the X.
Genes & Development | 2013
Artyom A. Alekseyenko; Christopher E. Ellison; Andrey A. Gorchakov; Qi Zhou; Vera B. Kaiser; Nick Toda; Zaak Walton; Shouyong Peng; Peter J. Park; Doris Bachtrog; Mitzi I. Kuroda
Dosage compensation has arisen in response to the evolution of distinct male (XY) and female (XX) karyotypes. In Drosophila melanogaster, the MSL complex increases male X transcription approximately twofold. X-specific targeting is thought to occur through sequence-dependent binding to chromatin entry sites (CESs), followed by spreading in cis to active genes. We tested this model by asking how newly evolving sex chromosome arms in Drosophila miranda acquired dosage compensation. We found evidence for the creation of new CESs, with the analogous sequence and spacing as in D. melanogaster, providing strong support for the spreading model in the establishment of dosage compensation.
Proceedings of the National Academy of Sciences of the United States of America | 2015
John W. Taylor; Christopher Hann-Soden; Sara Branco; Iman Sylvain; Christopher E. Ellison
Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest.
Genome Biology and Evolution | 2015
Caiti Smukowski Heil; Christopher E. Ellison; Matthew Dubin; Mohamed A. F. Noor
Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.
Systematic Botany | 2011
Mark Fishbein; David Chuba; Christopher E. Ellison; Roberta J. Mason-Gamer; Steven P. Lynch
Abstract Milkweeds (Asclepias s. l., Apocynaceae) are characteristic perennial herbs of grasslands in North America and Africa that have long served as models for studying the evolutionary ecology of plant reproduction and plant defense. Generic circumscription of Asclepias has been long debated with recent workers favoring delimitation on geographic grounds; Asclepias s. s. is limited to the Americas and only segregate genera are recognized for African species. A widely used system introduced by Woodson classifies North American Asclepias into nine subgenera, with the largest subgenus, Asclepias, further divided into eight series. We investigated the phylogeny of Asclepias using three noncoding loci from the plastid genome: rpl16 intron, trnCGCA —rpoB spacer, and the adjacent trnSGCU —trnGuuc spacer and trnGuuc intron. Parsimony, likelihood, and Bayesian analyses were conducted to evaluate hypotheses of continental and taxonomic monophyly. Hypothesis tests were conducted under the parsimony and likelihood criteria. We found moderate support for the monophyly of American Asclepias s. s. and for all but one representative of African Asclepias s. l. Within the Amerian clade, South American species are strongly supported as monophyletic and derived from North American ancestors. Only one of Woodsons 17 infrageneric taxa was found to be monophyletic. Monophyly of more than one half of the remaining 16 taxa could be statistically rejected using a conservative &agr; level. Our results are consistent with taxonomic restriction of Asclepias to American species and single colonization events from Africa to North America and North America to South America. They also point to a need for major restructuring of infrageneric classification and future revsionary work.