Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher H. Mody is active.

Publication


Featured researches published by Christopher H. Mody.


Journal of Clinical Investigation | 2010

Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain

Meiqing Shi; Shu Shun Li; Chunfu Zheng; Gareth Jones; Kwang Sik Kim; Hong Zhou; Paul Kubes; Christopher H. Mody

Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection.


Journal of Immunology | 2002

CD8 T Cell-Mediated Killing of Cryptococcus neoformans Requires Granulysin and Is Dependent on CD4 T Cells and IL-15

Ling Ling Ma; Jason C. L. Spurrell; Jian Fei Wang; G. Gregory Neely; Slava Epelman; Alan M. Krensky; Christopher H. Mody

Granulysin is located in the acidic granules of cytotoxic T cells. Although the purified protein has antimicrobial activity against a broad spectrum of microbial pathogens, direct evidence for granulysin-mediated cytotoxicity has heretofore been lacking. Studies were performed to examine the regulation and activity of granulysin expressed by CD8 T cells using Cryptococcus neoformans, which is one of the most common opportunistic pathogens of AIDS patients. IL-15-activated CD8 T cells acquired anticryptococcal activity, which correlated with the up-regulation of granulysin. When granules containing granulysin were depleted using SrCl2, or when the gene was silenced using 21-nt small interfering RNA duplexes, the antifungal effect of CD8 T cells was abrogated. Concanamycin A and EGTA did not affect the antifungal effect, suggesting that the activity of granulysin was perforin independent. Following stimulation by the C. neoformans mitogen, CD8 T cells expressed granulysin and acquired antifungal activity. This activity required CD4 T cells and was dependent upon accessory cells. Furthermore, IL-15 was both necessary and sufficient for granulysin up-regulation in CD8 T cells. These observations are most consistent with a mechanism whereby C. neoformans mitogen is presented to CD4 T cells, which in turn activate accessory cells. The resultant IL-15 activates CD8 T cells to express granulysin, which is responsible for antifungal activity.


Infection and Immunity | 2002

Primary Dendritic Cells Phagocytose Cryptococcus neoformans via Mannose Receptors and Fcγ Receptor II for Presentation to T Lymphocytes

Rachel M. Syme; Jason C. L. Spurrell; Ernest K. Amankwah; Francis H. Y. Green; Christopher H. Mody

ABSTRACT Different “professional” antigen-presenting cells (APC) have unique characteristics that favor or restrict presentation of microbial antigens to T cells, depending on the organism. Cryptococcus neoformans is a pathogenic yeast that presents unique challenges to APC, including its large size, its rigid cell wall, and its ability to stimulate T cells as a mitogen. T-cell proliferation in response to the C. neoformans mitogen (CnM) requires phagocytosis and processing of the organisms by accessory cells prior to presentation of CnM to T cells. Because of the requirement for uptake of the organism and more limited costimulatory requirements of mitogens, macrophages might be the most likely cellular source for the accessory cell. However, the present study demonstrates that a transiently adherent cell that was CD3−, CD14−, CD19−, CD56−, HLA-DR+, and CD83+ with a dendritic morphology, rather than monocyte-derived or tissue (alveolar) macrophages, was the most efficient APC for presentation of CnM. A large number of these cells bound and internalized the organism, and only a small number of dendritic cells were required for presentation of the mitogen to T cells. Further, the mannose receptor and Fcγ receptor II were required for presentation of C. neoformans, as blocking either of these receptors abrogated both uptake of C. neoformans and lymphocyte proliferation in response to CnM. These studies demonstrate the surprising fact that dendritic cells are the most efficient accessory cells for CnM.


Journal of Immunology | 2004

NK Cells Use Perforin Rather than Granulysin for Anticryptococcal Activity

Ling Ling Ma; Christopher L. C. Wang; G. Gregory Neely; Slava Epelman; Alan M. Krensky; Christopher H. Mody

Cytotoxic lymphocytes have the capacity to kill microbes directly; however, the mechanisms involved are poorly understood. Using Cryptococcus neoformans, which causes a potentially fatal fungal infection in HIV-infected patients, our previous studies showed that granulysin is necessary, while perforin is dispensable, for CD8 T lymphocyte fungal killing. By contrast, the mechanisms by which NK cells exert their antimicrobial activity are not clear, and in particular, the contribution of granulysin and perforin to NK-mediated antifungal activity is unknown. Primary human NK cells and a human NK cell line YT were found to constitutively express granulysin and perforin, and possessed anticryptococcal activity, in contrast to CD8 T lymphocytes, which required stimulation. When granulysin protein and mRNA were blocked by granulysin small interfering RNA, the NK cell-mediated antifungal effect was not affected in contrast to the abrogated activity observed in CD8 T lymphocytes. However, when perforin was inhibited by concanamycin A, and silenced using hairpin small interfering RNA, the anticryptococcal activities of NK cells were abrogated. Furthermore, when granulysin and perforin were both inhibited, the anticryptococcal activities of the NK cells were not reduced further than by silencing perforin alone. These results indicate that the antifungal activity is constitutively expressed in NK cells in contrast to CD8 T lymphocytes, in which it requires prior activation, and perforin, but not granulysin, plays the dominant role in NK cell anticryptococcal activity, in contrast to CD8 T lymphocytes, in which granulysin, but not perforin, plays the dominant role in anticryptococcal activity.


Journal of Immunology | 2004

Different Domains of Pseudomonas aeruginosa Exoenzyme S Activate Distinct TLRs

Slava Epelman; Danuta Stack; Chris Bell; Erica Wong; G. Gregory Neely; Stephan Krutzik; Kensuke Miyake; Paul Kubes; Lori Zbytnuik; Ling Ling Ma; Xiaobin Xie; Donald E. Woods; Christopher H. Mody

Some bacterial products possess multiple immunomodulatory effects and thereby complex mechanisms of action. Exogenous administration of an important Pseudomonas aeruginosa virulence factor, exoenzyme S (ExoS) induces potent monocyte activation leading to the production of numerous proinflammatory cytokines and chemokines. However, ExoS is also injected directly into target cells, inducing cell death through its multiple effects on signaling pathways. This study addresses the mechanisms used by ExoS to induce monocyte activation. Exogenous administration resulted in specific internalization of ExoS via an actin-dependent mechanism. However, ExoS-mediated cellular activation was not inhibited if internalization was blocked, suggesting an alternate mechanism of activation. ExoS bound a saturable and specific receptor on the surface of monocytic cells. ExoS, LPS, and peptidoglycan were all able to induce tolerance and cross-tolerance to each other suggesting the involvement of a TLR in ExoS-recognition. ExoS activated monocytic cells via a myeloid differentiation Ag-88 pathway, using both TLR2 and the TLR4/MD-2/CD14 complex for cellular activation. Interestingly, the TLR2 activity was localized to the C-terminal domain of ExoS while the TLR4 activity was localized to the N-terminal domain. This study provides the first example of how different domains of the same molecule activate two TLRs, and also highlights the possible overlapping pathophysiological processes possessed by microbial toxins.


Journal of Immunology | 2001

Lipopolysaccharide-stimulated or granulocyte-macrophage colony-stimulating factor-stimulated monocytes rapidly express biologically active IL-15 on their cell surface independent of new protein synthesis.

G. Gregory Neely; Stephen M. Robbins; Ernest K. Amankwah; Slava Epelman; Howard Wong; Jason C. L. Spurrell; Kiran K. Jandu; Weibin Zhu; Darin K. Fogg; Christopher B. Brown; Christopher H. Mody

Although IL-15 shares many of the biological activities of IL-2, IL-2 expression is primarily under transcriptional regulation, while the mechanisms involved in the regulation of IL-15 are complex and not completely understood. In the current study, we found that CD14+ monocytes constitutively exhibit both IL-15 mRNA and protein. IL-15 protein was found stored intracellularly and stimulation of CD14+ monocytes with either LPS or GM-CSF resulted in mobilization of IL-15 stores to the plasma membrane. This rapidly induced surface expression was the result of a translocation of preformed stores, confirming that posttranslational regulatory stages limit IL-15, because it was not accompanied by an increase in IL-15 mRNA and occurred independent of de novo protein synthesis. After fixation, activated monocytes, but not resting monocytes, were found to support T cell proliferation, and this effect was abrogated by the addition of an IL-15-neutralizing Ab. The presence of preformed IL-15 stores and the ability of stimulated monocytes to mobilize these stores to their surface in an active form is a novel mechanism of regulation for IL-15.


Journal of Immunology | 2004

Monocyte Surface-Bound IL-15 Can Function as an Activating Receptor and Participate in Reverse Signaling

G. Gregory Neely; Slava Epelman; Ling Ling Ma; Pina Colarusso; Christopher J. Howlett; Ernest K. Amankwah; Amanda C. McIntyre; Stephen M. Robbins; Christopher H. Mody

IL-15 is a short chain, four-α helix cytokine that shares some biological function with IL-2. One striking difference between IL-2 and IL-15 is the ability of monocytes to express IL-15 on their cell surface after activation. In the current study we have investigated the ability of human monocyte cell surface IL-15 to participate in reverse signaling. Cross-linking anti-IL-15 Abs were used as a surrogate ligand for surface IL-15 engagement. Ligation of cell surface-expressed IL-15 induced monocyte adhesion that required the activity of small m.w. GTPases. Reverse signals through surface IL-15 activated the Rho-GTPase Rac3. In addition, engagement of cell surface IL-15 was found to activate a number of signaling pathways, including both extracellular signal-regulated kinase 1/2 and p38, and resulted in the secretion of IL-8. IL-8 production required mitogen-activated protein kinase activity. Thus, the current study has established that cell surface IL-15 is more than just a ligand; it can function as a receptor and participate in reverse signaling that results in cellular adhesion and production of inflammatory cytokines.


Clinics in Chest Medicine | 2009

Cryptococcosis: An Emerging Respiratory Mycosis

Shaunna M. Huston; Christopher H. Mody

Cryptococcosis occurs in immunocompromised and, in special cases, immunocompetent individuals. There have been a number of important advances in the field, but, despite current treatment, patients continue to die of the infection. This article reviews cryptococcosis epidemiology, clinical features, and management. Current knowledge is incomplete, however, so this article also discusses some of the gaps in the present understanding of cryptococcosis. The hope is that current research striving to understand the mechanisms of host evasion of Cryptococcus will result in improved treatment regimens that decrease both the mortality and morbidity of cryptococcosis.


Infection and Immunity | 2000

Pseudomonas aeruginosa Exoenzyme S Induces Transcriptional Expression of Proinflammatory Cytokines and Chemokines

Slava Epelman; Tony F. Bruno; G. Gregory Neely; Donald E. Woods; Christopher H. Mody

ABSTRACT Pseudomonas aeruginosa infection of cystic fibrosis patients causes lung damage that is substantially orchestrated by cytokines. In this study, multi-gene probe analysis was used to characterize the ability of the P. aeruginosamitogen, exoenzyme S, to induce proinflammatory and immunoregulatory cytokines and chemokines. Exoenzyme S strongly induced transcription of proinflammatory cytokines and chemokines (tumor necrosis factor alpha, interleukin-1α [IL-1α], IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, MCP-1, RANTES, and I-309), modest transcription of immunoregulatory cytokines (IL-10 and IL-12p40), and weak transcription of Th1 cytokines (IL-2 and gamma interferon). The response occurred early and subsided without evolving over time. These data suggest that cells responding to exoenzyme S would rapidly express proinflammatory cytokines and chemokines that may contribute to pulmonary inflammation in cystic fibrosis.


Infection and Immunity | 2009

Cryptococcus neoformans Directly Stimulates Perforin Production and Rearms NK Cells for Enhanced Anticryptococcal Microbicidal Activity

Kaleb J. Marr; Gareth Jones; Chunfu Zheng; Shaunna M. Huston; Martina Timm-McCann; Anowara Islam; Byron M. Berenger; Ling Ling Ma; Jeremy C. D. Wiseman; Christopher H. Mody

ABSTRACT NK cells, in addition to possessing antitumor and antiviral activity, exhibit perforin-dependent microbicidal activity against the opportunistic pathogen Cryptococcus neoformans. However, the factors controlling this response, particularly whether the pathogen itself provides an activation or rearming signal, are largely unknown. The current studies were performed to determine whether exposure to this fungus alters subsequent NK cell anticryptococcal activity. NK cells lost perforin and mobilized lysosome-associated membrane protein 1 to the cell surface following incubation with the fungus, indicating that degranulation had occurred. Despite a reduced perforin content during killing, NK cells acquired an enhanced ability to kill C. neoformans, as demonstrated using auxotrophs that allowed independent assessment of the killing of two strains. De novo protein synthesis was required for optimal killing; however, there was no evidence that a soluble factor contributed to the enhanced anticryptococcal activity. Exposure of NK cells to C. neoformans caused the cells to rearm, as demonstrated by increased perforin mRNA levels and enhanced loss of perforin when transcription was blocked. Degranulation alone was insufficient to provide the activation signal as NK cells lost anticryptococcal activity following treatment with strontium chloride. However, NK cells regained the activity upon prolonged exposure to C. neoformans, which is consistent with activation by the microbe. The enhanced cytotoxicity did not extend to tumor killing since NK cells exposed to C. neoformans failed to kill NK-sensitive tumor targets (K562 cells). These studies demonstrate that there is contact-mediated microbe-specific rearming and activation of microbicidal activity that are necessary for optimal killing of C. neoformans.

Collaboration


Dive into the Christopher H. Mody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge