Richard F. Xiang
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard F. Xiang.
Journal of Immunology | 2013
Shaunna M. Huston; Shu Shun Li; Danuta Stack; Martina Timm-McCann; Gareth Jones; Anowara Islam; Byron M. Berenger; Richard F. Xiang; Pina Colarusso; Christopher H. Mody
During adaptive immunity to pathogens, dendritic cells (DCs) capture, kill, process, and present microbial Ags to T cells. Ag presentation is accompanied by DC maturation driven by appropriate costimulatory signals. However, current understanding of the intricate regulation of these processes remains limited. Cryptococcus gattii, an emerging fungal pathogen in the Pacific Northwest of Canada and the United States, fails to stimulate an effective immune response in otherwise healthy hosts leading to morbidity or death. Because immunity to fungal pathogens requires intact cell-mediated immunity initiated by DCs, we asked whether C. gattii causes dysregulation of DC functions. C. gattii was efficiently bound and internalized by human monocyte-derived DCs, trafficked to late phagolysosomes, and killed. Yet, even with this degree of DC activation, the organism evaded pathways leading to DC maturation. Despite the ability to recognize and kill C. gattii, immature DCs failed to mature; there was no increased expression of MHC class II, CD86, CD83, CD80, and CCR7, or decrease of CD11c and CD32, which resulted in suboptimal T cell responses. Remarkably, no increase in TNF-α was observed in the presence of C. gattii. However, addition of recombinant TNF-α or stimulation that led to TNF-α production restored DC maturation and restored T cell responses. Thus, despite early killing, C. gattii evades DC maturation, providing a potential explanation for its ability to infect immunocompetent individuals. We have also established that DCs retain the ability to recognize and kill C. gattii without triggering TNF-α, suggesting independent or divergent activation pathways among essential DC functions.
PLOS Pathogens | 2013
Anowara Islam; Shu Shun Li; Paul Oykhman; Martina Timm-McCann; Shaunna M. Huston; Danuta Stack; Richard F. Xiang; Margaret M. Kelly; Christopher H. Mody
Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a gradient from physiologic pH to less than 6 in the center of the cryptococcoma. As acidic pH inhibits anti-tumor activities of NK cells, we sought to determine if there was a similar reduction in the anticryptococcal activity of NK cells. Surprisingly, we found that both primary human NK cells and the human NK cell line, YT, have preserved or even enhanced killing of Cryptococcus in acidic, compared to physiological, pH. Studies to explore the mechanism of enhanced killing revealed that acidic pH does not increase the effector to target ratio, binding of cytolytic cells to Cryptococcus, or the active perforin content in effector cells. By contrast, perforin degranulation was greater at acidic pH, and increased degranulation was preceded by enhanced ERK1/2 phosphorylation, which is essential for killing. Moreover, using a replication defective ras1 knockout strain of Cryptococcus increased degranulation occurred during more rapid replication of the organisms. Finally, NK cells were found intimately associated with C. gattii within the cryptococcoma of a fatal infection. These results suggest that NK cells have amplified signaling, degranulation, and greater killing at low pH and when the organisms are replicating quickly, which would help maintain microbicidal host defense despite an acidic microenvironment.
Infection and Immunity | 2013
Paul Oykhman; Martina Timm-McCann; Richard F. Xiang; Anowara Islam; Shu Shun Li; Danuta Stack; Shaunna M. Huston; Ling Ling Ma; Christopher H. Mody
ABSTRACT Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse.
Journal of Immunology | 2016
Shaunna M. Huston; Popchai Ngamskulrungroj; Richard F. Xiang; Henry Ogbomo; Danuta Stack; Shu Shun Li; Martina Timm-McCann; Stephen K. Kyei; Paul Oykhman; Kyung J. Kwon-Chung; Christopher H. Mody
Cryptococcus gattii is an emerging fungal pathogen on the west coast of Canada and the United States that causes a potentially fatal infection in otherwise healthy individuals. In previous investigations of the mechanisms by which C. gattii might subvert cell-mediated immunity, we found that C. gattii failed to induce dendritic cell (DC) maturation, leading to defective T cell responses. However, the virulence factor and the mechanisms of evasion of DC maturation remain unknown. The cryptococcal polysaccharide capsule is a leading candidate because of its antiphagocytic properties. Consequently, we asked if the capsule of C. gattii was involved in evasion of DC maturation. We constructed an acapsular strain of C. gattii through CAP59 gene deletion by homologous integration. Encapsulated C. gattii failed to induce human monocyte-derived DC maturation and T cell proliferation, whereas the acapsular mutant induced both processes. Surprisingly, encapsulation impaired DC maturation independent of its effect on phagocytosis. Indeed, DC maturation required extracellular receptor signaling that was dependent on TNF-α and p38 MAPK, but not ERK activation, and the cryptococcal capsule blocked this extracellular recognition. Although the capsule impaired phagocytosis that led to pH-dependent serine-, threonine-, and cysteine-sensitive protease-dependent Ag processing, it was insufficient to impair T cell responses. In summary, C. gattii affects two independent processes, leading to DC maturation and Ag processing. The polysaccharide capsule masked extracellular detection and reduced phagocytosis that was required for DC maturation and Ag processing, respectively. However, the T cell response was fully restored by inducing DC maturation.
Mbio | 2016
Stephen K. Kyei; Henry Ogbomo; ShuShun Li; Martina Timm-McCann; Richard F. Xiang; Shaunna M. Huston; Anutosh Ganguly; Pina Colarusso; M. John Gill; Christopher H. Mody
ABSTRACT Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK) cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12) restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12. IMPORTANCE The mechanisms by which NK cells bind directly to pathogens and deploy their deadly cytolytic machinery during microbial host defense are only beginning to be elucidated. With the goal of understanding this process, we used NK cells from HIV-infected patients, which were known to have a defect in killing of Cryptococcus neoformans. Taking advantage of previous studies that had shown that IL-12 restored killing, we used the cytokine as a gain-of-function approach to define the relevance of multiple steps in the recognition and cytolytic pathway. We demonstrated that NK cells from HIV-infected patients failed to kill Cryptococcus due to defects in perforin expression, granule polarization, and release of perforin. Additionally, IL-12 restored recognition of C. neoformans through binding of the NK-activating receptor NKp30. These observations identify important mechanisms used by NK cells to kill microbes and determine that defects in NK cells from HIV-infected patients are reversible. The mechanisms by which NK cells bind directly to pathogens and deploy their deadly cytolytic machinery during microbial host defense are only beginning to be elucidated. With the goal of understanding this process, we used NK cells from HIV-infected patients, which were known to have a defect in killing of Cryptococcus neoformans. Taking advantage of previous studies that had shown that IL-12 restored killing, we used the cytokine as a gain-of-function approach to define the relevance of multiple steps in the recognition and cytolytic pathway. We demonstrated that NK cells from HIV-infected patients failed to kill Cryptococcus due to defects in perforin expression, granule polarization, and release of perforin. Additionally, IL-12 restored recognition of C. neoformans through binding of the NK-activating receptor NKp30. These observations identify important mechanisms used by NK cells to kill microbes and determine that defects in NK cells from HIV-infected patients are reversible.
Journal of Biological Chemistry | 2016
Richard F. Xiang; Danuta Stack; Shaunna M. Huston; Shu Shun Li; Henry Ogbomo; Stephen K. Kyei; Christopher H. Mody
The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans.
Journal of Immunology | 2018
Richard F. Xiang; ShuShun Li; Henry Ogbomo; Danuta Stack; Christopher H. Mody
Cryptococcus neoformans is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to Cryptococcus, NK cells directly recognize and kill C. neoformans using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of C. neoformans requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of β1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including β1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of Cryptococcus, which activates a central cytolytic antimicrobial pathway leading to fungal killing.
Cell Host & Microbe | 2013
Shu Shun Li; Stephen K. Kyei; Martina Timm-McCann; Henry Ogbomo; Gareth Jones; Meiqing Shi; Richard F. Xiang; Paul Oykhman; Shaunna M. Huston; Anowara Islam; M. John Gill; Stephen M. Robbins; Christopher H. Mody
Nature Communications | 2018
Shu Shun Li; Henry Ogbomo; Michael K. Mansour; Richard F. Xiang; Lian Szabo; Fay Munro; Priyanka Mukherjee; Roy A. Mariuzza; Matthias Amrein; Jatin M. Vyas; Stephen M. Robbins; Christopher H. Mody
Cell Reports | 2018
Henry Ogbomo; Martina Timm-McCann; Tavish Barnes; Richard F. Xiang; Khusraw Jamil; Anutosh Ganguly; Danuta Stack; Shaunna M. Huston; Shu Shun Li; Pina Colarusso; Christopher H. Mody