Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry Ogbomo is active.

Publication


Featured researches published by Henry Ogbomo.


Cell Host & Microbe | 2013

The NK Receptor NKp30 Mediates Direct Fungal Recognition and Killing and Is Diminished in NK Cells from HIV-Infected Patients

Shu Shun Li; Stephen K. Kyei; Martina Timm-McCann; Henry Ogbomo; Gareth Jones; Meiqing Shi; Richard F. Xiang; Paul Oykhman; Shaunna M. Huston; Anowara Islam; M. John Gill; Stephen M. Robbins; Christopher H. Mody

Natural killer (NK) cells are a subset of immune effectors that directly bind and kill fungi via a perforin-dependent mechanism. The receptor mediating this activity and its potential role in disease remain unknown. Using an unbiased approach, we determined that NKp30 is responsible for recognition and killing of the fungal pathogens Cryptococcus and Candida. NKp30 was required for NK cell-fungal conjugatexa0formation, phosphatidylinositol 3-kinase (PI3K) signaling, and perforin release. Because fungal infections are a leading cause of death in AIDS patients, we examined NKp30 expression in HIV-infected patients. NK cells from these patients had diminishedxa0NKp30 expression, defective perforin release, and blunted microbicidal activity. Surprisingly, interleukin-12 (IL-12) restored NKp30 expression and fungal killing. Thus, the NKp30 receptor plays a critical role in NK cell antifungal cytotoxicity, and diminished expression of NKp30 is responsible for defective antifungal activity of NK cells from HIV-infected patients, which can be corrected with IL-12.


Trends in Molecular Medicine | 2011

Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy

Henry Ogbomo; Jindrich Cinatl; Christopher H. Mody; Peter A. Forsyth

Malignant gliomas (MGs) are deadly brain tumors with a median survival after resection, radiotherapy and chemotherapy of only 12 months. The natural immunosuppressive state of MG patients and the locally restricted growth of MGs render this neoplasm an excellent target for immunotherapy. Consequently, several failed attempts were made to treat MGs with immune cells. Recent preclinical experimental studies, however, demonstrate that natural killer (NK) cells can kill MGs and therefore hold promise in immunotherapy of MGs. This review describes the experimental and clinical evidence that support the potential of NK cells in therapy of MGs as well as the limitations to NK therapy. Finally, we propose strategies that could circumvent mitigating factors and enhance NK cell therapy for MG patients.


PLOS ONE | 2011

ARE HELICOBACTER PYLORI AND OTHER HELICOBACTER SPECIES INFECTION ASSOCIATED WITH HUMAN BILIARY LITHIASIS? A META-ANALYSIS

Di Zhou; Yong Zhang; Wei Gong; Sayid Omar Mohamed; Henry Ogbomo; Xuefeng Wang; Yingbin Liu; Zhiwei Quan

Background Since the isolation of Helicobacter species in biliary system, a hypothetical question was raised about the role of these agents in the development of cholelithiasis. This meta-analysis is to explore the association between the Helicobacter infection and biliary lithiasis. Methodology/Principal Findings A systematic literature search was performed to identify all eligible articles. Meta-analysis which was carried out using odds ratio and random effect model, 95% confidence intervals for odds ratio was calculated. Quantitative assessment of heterogeneity was explored by chi-square test with significance set at P value 0.10 and was measured using I 2 statistic. Eighteen studies published between 1998 and 2011 were finally eligible for meta-analysis. H. Pylori, H. Bilis, H. Hepaticus, H. Pullorum and H. Ganmani were studied. With heterogeneity (I2u200a=u200a69.5%, P<0.0001), significantly higher pooled infection rates of H. Pylori (OR: 2.59, 35.82% versus 26.75%, Pu200a=u200a0.01) and H. Hepaticus (OR: 3.13, 31.30% versus 12.12%, Pu200a=u200a0.02) were observed in lithiasis group. Higher prevalence of H. Pylori in cholelithiasis patients were reported by studies from East Asia, South Asia and South America. Evidences supporting the higher presence of H. Pylori in cholelithiasis patients could be found by PCR for detecting 16s rRNA in bile, 26kDa protein gene in biliary tissue and immunohistochemistry. Using multiple detection tests could increase the detection rate of H. Pylori. Conclusions/Significances Our meta-analysis suggests a trend of higher presence of H. Pylori in cholelithiasis patients than control group and this trend was significant in the regions with higher prevalence of this agent. Evidences supporting the association between Helicobacter and cholelithiasis could be found by using different tests but the gold standard for the identification of these bacteria in biliary system has yet to be established. Considering obvious heterogeneity, a large multi-center study will facilitate us to further clarify the association between the Helicobacter infection and cholelithiasis.


PLOS ONE | 2013

Myxoma Virus Infection Promotes NK Lysis of Malignant Gliomas In Vitro and In Vivo

Henry Ogbomo; Franz J. Zemp; Xueqing Lun; Jiqing Zhang; Danuta Stack; Masmudur M. Rahman; Grant McFadden; Christopher H. Mody; Peter A. Forsyth

Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, Pu200a=u200a.0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, Pu200a=u200a.0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, Pu200a=u200a.0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank Pu200a=u200a.0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.


Journal of Immunology | 2016

Cryptococcus gattii Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing

Shaunna M. Huston; Popchai Ngamskulrungroj; Richard F. Xiang; Henry Ogbomo; Danuta Stack; Shu Shun Li; Martina Timm-McCann; Stephen K. Kyei; Paul Oykhman; Kyung J. Kwon-Chung; Christopher H. Mody

Cryptococcus gattii is an emerging fungal pathogen on the west coast of Canada and the United States that causes a potentially fatal infection in otherwise healthy individuals. In previous investigations of the mechanisms by which C. gattii might subvert cell-mediated immunity, we found that C. gattii failed to induce dendritic cell (DC) maturation, leading to defective T cell responses. However, the virulence factor and the mechanisms of evasion of DC maturation remain unknown. The cryptococcal polysaccharide capsule is a leading candidate because of its antiphagocytic properties. Consequently, we asked if the capsule of C. gattii was involved in evasion of DC maturation. We constructed an acapsular strain of C. gattii through CAP59 gene deletion by homologous integration. Encapsulated C. gattii failed to induce human monocyte-derived DC maturation and T cell proliferation, whereas the acapsular mutant induced both processes. Surprisingly, encapsulation impaired DC maturation independent of its effect on phagocytosis. Indeed, DC maturation required extracellular receptor signaling that was dependent on TNF-α and p38 MAPK, but not ERK activation, and the cryptococcal capsule blocked this extracellular recognition. Although the capsule impaired phagocytosis that led to pH-dependent serine-, threonine-, and cysteine-sensitive protease-dependent Ag processing, it was insufficient to impair T cell responses. In summary, C. gattii affects two independent processes, leading to DC maturation and Ag processing. The polysaccharide capsule masked extracellular detection and reduced phagocytosis that was required for DC maturation and Ag processing, respectively. However, the T cell response was fully restored by inducing DC maturation.


Nature Communications | 2018

Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida

Shu Shun Li; Henry Ogbomo; Michael K. Mansour; Richard F. Xiang; Lian Szabo; Fay Munro; Priyanka Mukherjee; Roy A. Mariuzza; Matthias Amrein; Jatin M. Vyas; Stephen M. Robbins; Christopher H. Mody

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that β-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, β-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble β-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating β-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity.Natural killer (NK) cells has been show to mediate fungi killing via the activating receptor NKp30, but the fungal target for NKp30 is still unclear. Here the authors show, using atomic force microscopy and live cell imaging, that β-1,3-glucan is expressed by Cryptococcus neoformans and Candida albicans and responsiblexa0for NKp30-mediated NK killing.


Mbio | 2016

Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients

Stephen K. Kyei; Henry Ogbomo; ShuShun Li; Martina Timm-McCann; Richard F. Xiang; Shaunna M. Huston; Anutosh Ganguly; Pina Colarusso; M. John Gill; Christopher H. Mody

ABSTRACT Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK) cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12) restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12. IMPORTANCE The mechanisms by which NK cells bind directly to pathogens and deploy their deadly cytolytic machinery during microbial host defense are only beginning to be elucidated. With the goal of understanding this process, we used NK cells from HIV-infected patients, which were known to have a defect in killing of Cryptococcus neoformans. Taking advantage of previous studies that had shown that IL-12 restored killing, we used the cytokine as a gain-of-function approach to define the relevance of multiple steps in the recognition and cytolytic pathway. We demonstrated that NK cells from HIV-infected patients failed to kill Cryptococcus due to defects in perforin expression, granule polarization, and release of perforin. Additionally, IL-12 restored recognition of C. neoformans through binding of the NK-activating receptor NKp30. These observations identify important mechanisms used by NK cells to kill microbes and determine that defects in NK cells from HIV-infected patients are reversible. The mechanisms by which NK cells bind directly to pathogens and deploy their deadly cytolytic machinery during microbial host defense are only beginning to be elucidated. With the goal of understanding this process, we used NK cells from HIV-infected patients, which were known to have a defect in killing of Cryptococcus neoformans. Taking advantage of previous studies that had shown that IL-12 restored killing, we used the cytokine as a gain-of-function approach to define the relevance of multiple steps in the recognition and cytolytic pathway. We demonstrated that NK cells from HIV-infected patients failed to kill Cryptococcus due to defects in perforin expression, granule polarization, and release of perforin. Additionally, IL-12 restored recognition of C. neoformans through binding of the NK-activating receptor NKp30. These observations identify important mechanisms used by NK cells to kill microbes and determine that defects in NK cells from HIV-infected patients are reversible.


Journal of Biological Chemistry | 2016

Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans.

Richard F. Xiang; Danuta Stack; Shaunna M. Huston; Shu Shun Li; Henry Ogbomo; Stephen K. Kyei; Christopher H. Mody

The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans.


Frontiers in Immunology | 2017

Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

Henry Ogbomo; Christopher H. Mody

Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed.


Journal of Immunology | 2018

β1 Integrins Are Required To Mediate NK Cell Killing of Cryptococcus neoformans

Richard F. Xiang; ShuShun Li; Henry Ogbomo; Danuta Stack; Christopher H. Mody

Cryptococcus neoformans is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to Cryptococcus, NK cells directly recognize and kill C. neoformans using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of C. neoformans requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of β1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including β1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of Cryptococcus, which activates a central cytolytic antimicrobial pathway leading to fungal killing.

Collaboration


Dive into the Henry Ogbomo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Forsyth

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge