Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Kampf is active.

Publication


Featured researches published by Christopher J. Kampf.


Chemical Reviews | 2015

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

Barbara Nozière; Markus Kaberer; M. Claeys; J. D. Allan; Barbara D'Anna; Stefano Decesari; E. Finessi; Marianne Glasius; Irena Grgić; Jacqueline F. Hamilton; Thorsten Hoffmann; Yoshiteru Iinuma; Mohammed Jaoui; Ariane Kahno; Christopher J. Kampf; Ivan Kourtchev; Willy Maenhaut; Nicholas Marsden; Sanna Saarikoski; Jürgen Schnelle-Kreis; Jason D. Surratt; Sönke Szidat; Rafal Szmigielski; Armin Wisthaler

Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway


Nanoscale | 2011

Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates

Stephan E. Wolf; Lars Peter Müller; Raúl A. Barrea; Christopher J. Kampf; Jork Leiterer; Ulrich Panne; Thorsten Hoffmann; Franziska Emmerling; Wolfgang Tremel

During the mineralisation of metal carbonates MCO3 (M=Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.


Journal of Proteome Research | 2014

Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents.

Kathrin Reinmuth-Selzle; Chloé Ackaert; Christopher J. Kampf; Martin Samonig; Manabu Shiraiwa; Stefan Kofler; Hong Yang; Gabriele Gadermaier; Hans Brandstetter; Christian G. Huber; Albert Duschl; Gertie J. Oostingh; Ulrich Pöschl

Nitration of the major birch pollen allergen Bet v 1 alters the immune responses toward this protein, but the underlying chemical mechanisms are not yet understood. Here we address the efficiency and site-selectivity of the nitration reaction of recombinant protein samples of Bet v 1.0101 with different nitrating agents relevant for laboratory investigations (tetranitromethane, TNM), for physiological processes (peroxynitrite, ONOO–), and for the health effects of environmental pollutants (nitrogen dioxide and ozone, O3/NO2). We determined the total tyrosine nitration degrees (ND) and the NDs of individual tyrosine residues (NDY). High-performance liquid chromatography coupled to diode array detection and HPLC coupled to high-resolution mass spectrometry analysis of intact proteins, HPLC coupled to tandem mass spectrometry analysis of tryptic peptides, and amino acid analysis of hydrolyzed samples were performed. The preferred reaction sites were tyrosine residues at the following positions in the polypeptide chain: Y83 and Y81 for TNM, Y150 for ONOO–, and Y83 and Y158 for O3/NO2. The tyrosine residues Y83 and Y81 are located in a hydrophobic cavity, while Y150 and Y158 are located in solvent-accessible and flexible structures of the C-terminal region. The heterogeneous reaction with O3/NO2 was found to be strongly dependent on the phase state of the protein. Nitration rates were about one order of magnitude higher for aqueous protein solutions (∼20% per day) than for protein filter samples (∼2% per day). Overall, our findings show that the kinetics and site-selectivity of nitration strongly depend on the nitrating agent and reaction conditions, which may also affect the biological function and adverse health effects of the nitrated protein.


Environmental Science & Technology | 2015

Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone

Christopher J. Kampf; Fobang Liu; Kathrin Reinmuth-Selzle; Thomas Berkemeier; Hannah Meusel; Manabu Shiraiwa; Ulrich Pöschl

Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.


Environmental Science & Technology | 2017

Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants

Kathrin Reinmuth-Selzle; Christopher J. Kampf; Kurt Lucas; Naama Lang-Yona; Janine Fröhlich-Nowoisky; Manabu Shiraiwa; Pascale S. J. Lakey; Senchao Lai; Fobang Liu; Anna T. Kunert; Kira Ziegler; Fangxia Shen; Rossella Sgarbanti; Bettina Weber; Joachim Saloga; Michael G. Weller; Albert Duschl; Detlef Schuppan; Ulrich Pöschl

Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.


Journal of Physical Chemistry A | 2015

Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal.

Theo Kurtén; Jonas Elm; N. L. Prisle; Kurt V. Mikkelsen; Christopher J. Kampf; Eleanor M. Waxman; R. Volkamer

We have used quantum chemical methods to investigate the molecular mechanism behind the recently reported ( Kampf , C. J. ; Environ. Sci. Technol . 2013 , 47 , 4236 - 4244 ) strong dependence of the Henrys law coefficient of glyoxal (C2O2H2) on the sulfate concentration of the aqueous phase. Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate-containing aerosol particles. This promotes the participation of glyoxal in reactions leading to secondary organic aerosol formation, especially in regions with high sulfate concentrations. We used our computed equilibrium constants for the complexation reactions to assess the magnitude of the Henrys law coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement.


Analytical and Bioanalytical Chemistry | 2013

Determination of nitration degrees for the birch pollen allergen Bet v 1

Kathrin Selzle; Chloé Ackaert; Christopher J. Kampf; Anna T. Kunert; Albert Duschl; Gertie J. Oostingh; Ulrich Pöschl

AbstractNitration of tyrosine residues in the major birch pollen allergen Bet v 1 may alter the allergenic potential of the protein. The kinetics and mechanism of the nitration reaction, however, have not yet been well characterized. To facilitate further investigations, an efficient method to quantify the nitration degree (ND) of small samples of Bet v 1 is required. Here, we present a suitable method of high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) that can be photometrically calibrated using the amino acids tyrosine (Tyr) and nitrotyrosine (NTyr) without the need for nitrated protein standards. The new method is efficient and in agreement with alternative methods based on hydrolysis and amino acid analysis of tetranitromethane (TNM)-nitrated Bet v 1 standards as well as samples from nitration experiments with peroxynitrite. The results confirm the applicability of the new method for the investigation of the reaction kinetics and mechanism of protein nitration. FigureIllustration of the photometry of tyrosine and nitrotyrosine


Chemical Reviews | 2018

Electrochemical Arylation Reaction

Siegfried R. Waldvogel; Sebastian Lips; Maximilian Selt; Barbara Riehl; Christopher J. Kampf

Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.


Analytical and Bioanalytical Chemistry | 2017

Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals

Fobang Liu; Senchao Lai; Haijie Tong; Pascale S. J. Lakey; Manabu Shiraiwa; Michael G. Weller; Ulrich Pöschl; Christopher J. Kampf

Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32–55% for BSA, ∼10–21% for OVA) were substantially higher than those for the other identified amino acids (∼5–12% for BSA, ∼4–6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.


Environmental Science & Technology | 2014

Novel Tracer Method To Measure Isotopic Labeled Gas-Phase Nitrous Acid (HO15NO) in Biogeochemical Studies

Dianming Wu; Christopher J. Kampf; Ulrich Pöschl; Robert Oswald; Junfang Cui; Michael Ermel; Chunsheng Hu; Ivonne Trebs; Matthias Sörgel

Gaseous nitrous acid (HONO), the protonated form of nitrite, contributes up to ∼60% to the primary formation of hydroxyl radical (OH), which is a key oxidant in the degradation of most air pollutants. Field measurements and modeling studies indicate a large unknown source of HONO during daytime. Here, we developed a new tracer method based on gas-phase stripping-derivatization coupled to liquid chromatography-mass spectrometry (LC-MS) to measure the 15N relative exceedance, ψ(15N), of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye, purified by solid phase extraction (SPE), and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the optimal working range of ψ(15N)=0.2-0.5, the relative standard deviation of ψ(15N) is <4%. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method was applied to measure HO15NO emissions from soil in a dynamic chamber with and without spiking 15) labeled urea. The identification of HO15NO from soil with 15N urea addition confirmed biogenic emissions of HONO from soil. The method enables a new approach of studying the formation pathways of HONO and its role for atmospheric chemistry (e.g., ozone formation) and environmental tracer studies on the formation and conversion of gaseous HONO or aqueous NO2- as part of the biogeochemical nitrogen cycle, e.g., in the investigation of fertilization effects on soil HONO emissions and microbiological conversion of NO2- in the hydrosphere.

Collaboration


Dive into the Christopher J. Kampf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senchao Lai

South China University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge