Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary E. Lidstrom is active.

Publication


Featured researches published by Mary E. Lidstrom.


Fems Microbiology Letters | 1995

Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related

Andrew J. Holmes; Andria M. Costello; Mary E. Lidstrom; J. Colin Murrell

Genes encoding particulate methane monooxygenase and ammonia monooxygenase share high sequence identity. Degenerate oligonucleotide primers were designed, based on regions of shared amino acid sequence between the 27-kDa polypeptides, which are believed to contain the active sites, of particulate methane monooxygenase and ammonia monooxygenase. A 525-bp internal DNA fragment of the genes encoding these polypeptides (pmoA and amoA) from a variety of methanotrophic and nitrifying bacteria was amplified by PCR, cloned and sequenced. Representatives of each of the phylogenetic groups of both methanotrophs (alpha- and gamma-Proteobacteria) and ammonia-oxidizing nitrifying bacteria (beta- and gamma-Proteobacteria) were included. Analysis of the predicted amino acid sequences of these genes revealed strong conservation of both primary and secondary structure. Nitrosococcus oceanus AmoA showed higher identity to PmoA sequences from other members of the gamma-Proteobacteria than to AmoA sequences. These results suggest that the particulate methane monooxygenase and ammonia monooxygenase are evolutionarily related enzymes despite their different physiological roles in these bacteria.


Science | 1991

A new cofactor in a prokaryotic enzyme : Tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase

William S. McIntire; David E. Wemmer; Andrei Y. Chistoserdov; Mary E. Lidstrom

Methylamine dehydrogenase (MADH), an alpha 2 beta 2 enzyme from numerous methylotrophic soil bacteria, contains a novel quinonoid redox prosthetic group that is covalently bound to its small beta subunit through two amino acyl residues. A comparison of the amino acid sequence deduced from the gene sequence of the small subunit for the enzyme from Methylobacterium extorquens AM1 with the published amino acid sequence obtained by the Edman degradation method, allowed the identification of the amino acyl constituents of the cofactor as two tryptophyl residues. This information was crucial for interpreting 1H and 13C nuclear magnetic resonance, and mass spectral data collected for the semicarbazide- and carboxymethyl-derivatized bis(tripeptidyl)-cofactor of MADH from bacterium W3A1. The cofactor is composed of two cross-linked tryptophyl residues. Although there are many possible isomers, only one is consistent with all the data: The first tryptophyl residue in the peptide sequence exists as an indole-6,7-dione, and is attached at its 4 position to the 2 position of the second, otherwise unmodified, indole side group. Contrary to earlier reports, the cofactor of MADH is not 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), a derivative thereof, or pro-PQQ. This appears to be the only example of two cross-linked, modified amino acyl residues having a functional role in the active site of an enzyme, in the absence of other cofactors or metal ions.


Microbiology | 2001

Development of improved versatile broad-host- range vectors for use in methylotrophs and other Gram-negative bacteria

Christopher J. Marx; Mary E. Lidstrom

Full exploitation of the information available in bacterial genome sequences requires the availability of facile tools for rapid genetic manipulation. One bacterium for which new genetic tools are needed is the methylotroph Methylobacterium extorquens AM1. IncQ and small IncP vectors were shown to be unsuitable for use in this bacterium, but a spontaneous mutant of a small IncP plasmid was isolated that functioned efficiently in M. extorquens AM1. This plasmid was sequenced and used as a base for developing improved broad-host-range cloning vectors. These vectors were found to replicate in a wide variety of bacterial species and have the following advantages: (1) high copy number in Escherichia coli; (2) small size (7.2 and 8.0 kb); (3) complete sequences; (4) variety of unique restriction sites; (5) blue-white screening via lacZalpha; (6) conjugative mobilization between bacterial species; and (7) readily adaptable into species-specific promoter-probe and expression vectors. Two low-background promoter-probe vectors were constructed based on these cloning vectors with either lacZ or xylE as reporter genes; these were shown to report gene expression effectively in M. extorquens AM1. Specific expression vectors were developed for use in M. extorquens AM1, which were shown to express foreign genes at significant levels, and a simple strategy is outlined to develop specific expression vectors for other bacteria. The strong mxaF promoter was used for expression, since E. coli lac-derived promoters were expressed at very low levels. This suite of genetic tools will enable a more sophisticated analysis of the physiology of M. extorquens AM1, and these vectors should also be valuable tools in the study of a variety of bacterial species.


Journal of Bacteriology | 2003

Methylotrophy in Methylobacterium extorquens AM1 from a Genomic Point of View

Ludmila Chistoserdova; Sung-Wei Chen; Alla Lapidus; Mary E. Lidstrom

Methylotrophy is defined as the ability to “grow at the expense of reduced carbon compounds containing one or more carbon atoms but containing no carbon-carbon bonds” (3). It is an intriguing example of microbial metabolic agility, with the use of a class of chemicals disregarded by the majority of organisms. Even though the ability to grow methylotrophically was first discovered in the early 1900s (cited in reference 3), it was not until the 1960s to 1970s that an understanding of the biochemical nature of this capability started to emerge. Fascination with methylotrophy in those years was fueled by the commercial interest in single-cell protein production, and as a result, the specific details of the biochemistry of methylotrophy began to be revealed. Enzymes for the primary oxidation of C1 substrates such as methanol dehydrogenase and methylamine dehydrogenase were characterized, and distinct modes of C1 assimilation, such as the ribulose monophosphate cycle and the serine cycle were discovered. The biochemical processes involved in methylotrophy that were known by 1982 are described in detail in the now classic book Biochemistry of Methylotrophs by Christopher Anthony (3). In the 20 years following the publication of Biochemistry of Methylotrophs, a few additional methylotrophy biochemical pathways have been discovered, such as the pathway for C1 transfer linked to methanopterin and methanofuran, which solved the long-standing mystery of formaldehyde oxidation in many methylotrophs (15, 53), and novel pathways for primary C1 oxidation, such as the pathways for degradation of chlorinated methanes and methanesulfonic acid (21, 50).


Annual Review of Microbiology | 2009

The Expanding World of Methylotrophic Metabolism

Ludmila Chistoserdova; Marina G. Kalyuzhnaya; Mary E. Lidstrom

In the past few years, the field of methylotrophy has undergone a significant transformation in terms of discovery of novel types of methylotrophs, novel modes of methylotrophy, and novel metabolic pathways. This time has also been marked by the resolution of long-standing questions regarding methylotrophy and the challenge of long-standing dogmas. This chapter is not intended to provide a comprehensive review of metabolism of methylotrophic bacteria. Instead we focus on significant recent discoveries that are both refining and transforming the current understanding of methylotrophy as a metabolic phenomenon. We also review new directions in methylotroph ecology that improve our understanding of the role of methylotrophy in global biogeochemical processes, along with an outlook for the future challenges in the field.


Nature Biotechnology | 2008

High-resolution metagenomics targets specific functional types in complex microbial communities.

Marina G. Kalyuzhnaya; Alla Lapidus; Natalia Ivanova; Alex Copeland; Alice C. McHardy; Ernest Szeto; Asaf Salamov; Igor V. Grigoriev; Dominic Suciu; Samuel R Levine; Victor Markowitz; Isidore Rigoutsos; Susannah G. Tringe; David Bruce; Paul M. Richardson; Mary E. Lidstrom; Ludmila Chistoserdova

Most microbes in the biosphere remain unculturable. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) can be used to study the genetic and metabolic properties of natural microbial communities. However, in communities of high complexity, metagenomics fails to link specific microbes to specific ecological functions. To overcome this limitation, we developed a method to target microbial subpopulations by labeling DNA through stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis of microbes from Lake Washington in Seattle that oxidize single-carbon (C1) compounds shows specific sequence enrichments in response to different C1 substrates, revealing the ecological roles of individual phylotypes. We also demonstrate the utility of our approach by extracting a nearly complete genome of a novel methylotroph, Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This high-resolution, targeted metagenomics approach may be applicable to a wide variety of ecosystems.


Nature Chemical Biology | 2010

The role of physiological heterogeneity in microbial population behavior

Mary E. Lidstrom; Michael C. Konopka

As the ability to analyze individual cells in microbial populations expands, it is becoming apparent that isogenic microbial populations contain substantial cell-to-cell differences in physiological parameters such as growth rate, resistance to stress and regulatory circuit output. Subpopulations exist that are manyfold different in these parameters from the population average, and these differences arise by stochastic processes. Such differences can dramatically affect the response of cells to perturbations, especially stress, which in turn dictates overall population response. Defining the role of cell-to-cell heterogeneity in population behavior is important for understanding population-based research problems, including those involving infecting populations, normal flora and bacterial populations in water and soils. Emerging technological breakthroughs are poised to transform single-cell analysis and are critical for the next phase of insights into physiological heterogeneity in the near future. These include technologies for multiparameter analysis of live cells, with downstream processing and analysis.


Applied and Environmental Microbiology | 2000

Molecular characterization of methanotrophic isolates from freshwater lake sediment.

Ann J. Auman; Sergei Stolyar; Andria M. Costello; Mary E. Lidstrom

ABSTRACT Profiles of dissolved O2 and methane with increasing depth were generated for Lake Washington sediment, which suggested the zone of methane oxidation is limited to the top 0.8 cm of the sediment. Methane oxidation potentials were measured for 0.5-cm layers down to 1.5 cm and found to be relatively constant at 270 to 350 μmol/liter of sediment/h. Approximately 65% of the methane was oxidized to cell material or metabolites, a signature suggestive of type I methanotrophs. Eleven methanotroph strains were isolated from the lake sediment and analyzed. Five of these strains classed as type I, while six were classed as type II strains by 16S rRNA gene sequence analysis. Southern hybridization analysis with oligonucleotide probes detected, on average, one to two copies of pmoA and one to three copies of 16S rRNA genes. Only one restriction length polymorphism pattern was shown for pmoA genes in each isolate, and in cases where, sequencing was done, the pmoA copies were found to be almost identical. PCR primers were developed formmoX which amplified 1.2-kb regions from all six strains that tested positive for cytoplasmic soluble methane mono-oxygenase (sMMO) activity. Phylogenetic analysis of the translated PCR products with published mmoX sequences showed that MmoX falls into two distinct clusters, one containing the orthologs from type I strains and another containing the orthologs from type II strains. The presence of sMMO-containing Methylomonas strains in a pristine freshwater lake environment suggests that these methanotrophs are more widespread than has been previously thought.


PLOS ONE | 2009

Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources

Stéphane Vuilleumier; Ludmila Chistoserdova; Ming-Chun Lee; Françoise Bringel; Aurélie Lajus; Yang Zhou; Benjamin Gourion; Valérie Barbe; Jean Chang; Stéphane Cruveiller; Carole Dossat; Will Gillett; Christelle Gruffaz; Eric Haugen; Edith Hourcade; Ruth Levy; Sophie Mangenot; Emilie Muller; Thierry Nadalig; Marco Pagni; Christian Penny; Rémi Peyraud; David G. Robinson; David Roche; Zoé Rouy; Channakhone Saenampechek; Grégory Salvignol; David Vallenet; Zaining Wu; Christopher J. Marx

Background Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid). Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.


Journal of Bacteriology | 2000

Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.

Julia A. Vorholt; Christopher J. Marx; Mary E. Lidstrom; Rudolf K. Thauer

Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria.

Collaboration


Dive into the Mary E. Lidstrom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andria M. Costello

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Y. Chistoserdov

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tim J. Strovas

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge