Christopher J. Tonkin
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. Tonkin.
Nature Reviews Microbiology | 2004
Stuart A. Ralph; Giel G. van Dooren; Ross F. Waller; Michael J. Crawford; Martin Fraunholz; Bernardo J. Foth; Christopher J. Tonkin; David S. Roos; Geoffrey I. McFadden
Discovery of a relict chloroplast (the apicoplast) in malarial parasites presented new opportunities for drug development. The apicoplast – although no longer photosynthetic – is essential to parasites. Combining bioinformatics approaches with experimental validation in the laboratory, we have identified more than 500 proteins predicted to function in the apicoplast. By comparison with plant chloroplasts, we have reconstructed several anabolic pathways for the parasite plastid that are fundamentally different to the analogous pathways in the human host and are potentially good targets for drug development. Products of these pathways seem to be exported from the apicoplast and might be involved in host-cell invasion.
PLOS Biology | 2009
Christopher J. Tonkin; Celine Carret; Manoj T. Duraisingh; Till S. Voss; Stuart A. Ralph; Mirja Hommel; Michael F. Duffy; Liliana Mancio da Silva; Artur Scherf; Alasdair Ivens; Terence P. Speed; James G. Beeson; Alan F. Cowman
Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulators A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+)-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.
Molecular Microbiology | 2005
Giel G. van Dooren; Matthias Marti; Christopher J. Tonkin; Luciana M. Stimmler; Alan F. Cowman; Geoffrey I. McFadden
Plasmodium parasites are unicellular eukaryotes that undergo a series of remarkable morphological transformations during the course of a multistage life cycle spanning two hosts (mosquito and human). Relatively little is known about the dynamics of cellular organelles throughout the course of these transformations. Here we describe the morphology of three organelles (endoplasmic reticulum, apicoplast and mitochondrion) through the human blood stages of the parasite life cycle using fluorescent reporter proteins fused to organelle targeting sequences. The endoplasmic reticulum begins as a simple crescent‐shaped organelle that develops into a perinuclear ring with two small protrusions, followed by transformation into an extensive reticulated network as the parasite enlarges. Similarly, the apicoplast and the mitochondrion grow from single, small, discrete organelles into highly branched structures in later‐stage parasites. These branched structures undergo an ordered fission – apicoplast followed by mitochondrion – to create multiple daughter organelles that are apparently linked as pairs for packaging into daughter cells. This is the first in‐depth examination of intracellular organelles in live parasites during the asexual life cycle of this important human pathogen.
The Journal of Infectious Diseases | 2011
Leonid Gorelik; Carl Reid; Manuela Testa; Margot Brickelmaier; Simona Bossolasco; Annamaria Pazzi; Arabella Bestetti; Paul Carmillo; Ewa Wilson; Michele McAuliffe; Christopher J. Tonkin; John P. Carulli; Alexey Lugovskoy; Adriano Lazzarin; Shamil R. Sunyaev; Kenneth J. Simon; Paola Cinque
Progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease caused by JC virus (JCV) infection of oligodendrocytes, may develop in patients with immune disorders following reactivation of chronic benign infection. Mutations of JCV capsid viral protein 1 (VP1), the capsid protein involved in binding to sialic acid cell receptors, might favor PML onset. Cerebrospinal fluid sequences from 37/40 PML patients contained one of several JCV VP1 amino acid mutations, which were also present in paired plasma but not urine sequences despite the same viral genetic background. VP1-derived virus-like particles (VLPs) carrying these mutations lost hemagglutination ability, showed different ganglioside specificity, and abolished binding to different peripheral cell types compared with wild-type VLPs. However, mutants still bound brain-derived cells, and binding was not affected by sialic acid removal by neuraminidase. JCV VP1 substitutions are acquired intrapatient and might favor JCV brain invasion through abrogation of sialic acid binding with peripheral cells, while maintaining sialic acid-independent binding with brain cells.
The Journal of Infectious Diseases | 2011
Carl Reid; Huo Li; Gargi Sur; Paul Carmillo; Steven E Bushnell; Rich Tizard; Michele McAuliffe; Christopher J. Tonkin; Kenneth J. Simon; Susan Goelz; Paola Cinque; Leonid Gorelik; John P. Carulli
Background. Progressive multifocal leukoencephalopathy (PML) in natalizumab-treated MS patients is linked to JC virus (JCV) infection. JCV sequence variation and rearrangements influence viral pathogenicity and tropism. To better understand PML development, we analyzed viral DNA sequences in blood, CSF and/or urine of natalizumab-treated PML patients. Methods. Using biofluid samples from 17 natalizumab-treated PML patients, we sequenced multiple isolates of the JCV noncoding control region (NCCR), VP1 capsid coding region, and the entire 5 kb viral genome. Results. Analysis of JCV from multiple biofluids revealed that individuals were infected with a single genotype. Across our patient cohort, multiple PML-associated NCCR rearrangements and VP1 mutations were present in CSF and blood, but absent from urine-derived virus. NCCR rearrangements occurred in CSF of 100% of our cohort. VP1 mutations were observed in blood or CSF in 81% of patients. Sequencing of complete JCV genomes demonstrated that NCCR rearrangements could occur without VP1 mutations, but VP1 mutations were not observed without NCCR rearrangement. Conclusions. These data confirm that JCV in natalizumab-PML patients is similar to that observed in other PML patient groups, multiple genotypes are associated with PML, individual patients appear to be infected with a single genotype, and PML-associated mutations arise in patients during PML development.
Cell Host & Microbe | 2008
Jake Baum; Christopher J. Tonkin; Aditya S. Paul; Melanie Rug; Brian J. Smith; Sven B. Gould; Dave Richard; Thomas D. Pollard; Alan F. Cowman
Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.
Journal of Biological Chemistry | 2009
Hayley E. Bullen; Christopher J. Tonkin; Rebecca A. O'Donnell; Wai-Hong Tham; Anthony T. Papenfuss; Sven B. Gould; Alan F. Cowman; Brendan S. Crabb; Paul R. Gilson
The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.
Eukaryotic Cell | 2009
Ming Kalanon; Christopher J. Tonkin; Geoffrey I. McFadden
ABSTRACT Protein trafficking to the stroma of the apicoplast of Plasmodium falciparum requires translocation across several membranes. To further elucidate the mechanisms responsible, we investigated two proteins: P. falciparum Tic22 (PfTic22), a putative component of the translocon of the inner chloroplast membrane; and PfsDer1-1, one of two homologues of the P. falciparum symbiont-derived Der1 (sDer1) protein, a putative component of an endoplasmic reticulum-associated degradation (ERAD) complex in the periplastid membrane. We constructed parasites expressing hemagglutinin (HA)-tagged PfTic22 and PfsDer1-1 under the control of their endogenous promoters using the 3′ replacement strategy. We show that both PfTic22-HA and PfsDer1-1-HA are expressed predominantly during the trophozoite stage of the asexual replication cycle, which corresponds to the most dynamic stages of apicoplast activity. Although both proteins localize to the periphery of the apicoplast, PfTic22-HA is a membrane-associated protein while PfsDer1-1-HA is an integral membrane protein. Phylogenetic analysis indicates that PfsDer1-1 is one of two Der1 paralogues predicted to localize to the apicoplast in P. falciparum and that it has orthologues in diatom algae, supporting the chromalveolate hypothesis. These observations are consistent with putative roles for PfTic22 and PfsDer1-1 in protein translocation into the apicoplast of P. falciparum.
Molecular Microbiology | 2006
Christopher J. Tonkin; Nicole S. Struck; Kylie A. Mullin; Luciana M. Stimmler; Geoffrey I. McFadden
The malaria parasite Plasmodium falciparum harbours a relict plastid (termed the apicoplast) that has evolved by secondary endosymbiosis. The apicoplast is surrounded by four membranes, the outermost of which is believed to be part of the endomembrane system. Nuclear‐encoded apicoplast proteins have a two‐part N‐terminal extension that is necessary and sufficient for translocation across these four membranes. The first domain of this N‐terminal extension resembles a classical signal peptide and mediates translocation into the secretory pathway, whereas the second domain is homologous to plant chloroplast transit peptides and is required for the remaining steps of apicoplast targeting. We explored the initial, secretory pathway component of this targeting process using green fluorescent reporter protein constructs with modified leaders. We exchanged the apicoplast signal peptide with signal peptides from other secretory proteins and observed correct targeting, demonstrating that apicoplast targeting is initiated at the general secretory pathway of P. falciparum. Furthermore, we demonstrate by immunofluorescent labelling that the apicoplast resides on a small extension of the endoplasmic reticulum (ER) that is separate from the cis‐Golgi. To define the position of the apicoplast in the endomembrane pathway in relation to the Golgi we tracked apicoplast protein targeting in the presence of the secretory inhibitor Brefeldin A (BFA), which blocks traffic between the ER and Golgi. We observe apicoplast targeting in the presence of BFA despite clear perturbation of ER to Golgi traffic by the inhibitor, which suggests that the apicoplast resides upstream of the cis‐Golgi in the parasites endomembrane system. The addition of an ER retrieval signal (SDEL) – a sequence recognized by the cis‐Golgi protein ERD2 – to the C‐terminus of an apicoplast‐targeted protein did not markedly affect apicoplast targeting, further demonstrating that the apicoplast is upstream of the Golgi. Apicoplast transit peptides are thus dominant over an ER retention signal. However, when the transit peptide is rendered non‐functional (by two point mutations or by complete deletion) SDEL‐specific ER retrieval takes over, and the fusion protein is localized to the ER. We speculate either that the apicoplast in P. falciparum resides within the ER directly in the path of the general secretory pathway, or that vesicular trafficking to the apicoplast directly exits the ER.
PLOS Pathogens | 2012
James M. McCoy; Lachlan Whitehead; Giel G. van Dooren; Christopher J. Tonkin
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection. Ca2+-mediated signaling events modulate key steps required for host cell egress, invasion and motility, including secretion of microneme organelles and activation of the force-generating actomyosin-based motor. Here we show that a plant-like Calcium-Dependent Protein Kinase (CDPK) in T. gondii, TgCDPK3, which localizes to the inner side of the plasma membrane, is not essential to the parasite but is required for optimal in vitro growth. We demonstrate that TgCDPK3, the orthologue of Plasmodium PfCDPK1, regulates Ca2+ ionophore- and DTT-induced host cell egress, but not motility or invasion. Furthermore, we show that targeting to the inner side of the plasma membrane by dual acylation is required for its activity. Interestingly, TgCDPK3 regulates microneme secretion when parasites are intracellular but not extracellular. Indeed, the requirement for TgCDPK3 is most likely determined by the high K+ concentration of the host cell. Our results therefore suggest that TgCDPK3s role differs from that previously hypothesized, and rather support a model where this kinase plays a role in rapidly responding to Ca2+ signaling in specific ionic environments to upregulate multiple processes required for gliding motility.