Vic E. Myer
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vic E. Myer.
Nature | 2012
Jordi Barretina; Giordano Caponigro; Nicolas Stransky; Kavitha Venkatesan; Adam A. Margolin; Sungjoon Kim; Christopher J. Wilson; Joseph Lehar; Gregory V. Kryukov; Dmitriy Sonkin; Anupama Reddy; Manway Liu; Lauren Murray; Michael F. Berger; John E. Monahan; Paula Morais; Jodi Meltzer; Adam Korejwa; Judit Jané-Valbuena; Felipa A. Mapa; Joseph Thibault; Eva Bric-Furlong; Pichai Raman; Aaron Shipway; Ingo H. Engels; Jill Cheng; Guoying K. Yu; Jianjun Yu; Peter Aspesi; Melanie de Silva
The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Nature | 2009
Shih Min A Huang; Yuji Mishina; Shanming Liu; Atwood Cheung; Frank Stegmeier; Gregory A. Michaud; Olga Charlat; Yue Zhang; Stephanie Wiessner; Marc Hild; Xiaoying Shi; Christopher J. Wilson; Craig Mickanin; Vic E. Myer; Aleem Fazal; Ronald Tomlinson; Fabrizio C. Serluca; Wenlin Shao; Hong Cheng; Michael Shultz; Christina Rau; Markus Schirle; Judith Schlegl; Sonja Ghidelli; Stephen Fawell; Chris Lu; Daniel Curtis; Marc W. Kirschner; Christoph Lengauer; Peter Finan
The stability of the Wnt pathway transcription factor β-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits β-catenin-mediated transcription. XAV939 stimulates β-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.
Nature | 2010
Cory M. Johannessen; Jesse S. Boehm; So Young Kim; Sapana Thomas; Leslie Wardwell; Laura A. Johnson; Caroline Emery; Nicolas Stransky; Alexandria P. Cogdill; Jordi Barretina; Giordano Caponigro; Haley Hieronymus; Ryan R. Murray; Kourosh Salehi-Ashtiani; David E. Hill; Marc Vidal; Jean Zhao; Xiaoping Yang; Ozan Alkan; Sungjoon Kim; Jennifer L. Harris; Christopher J. Wilson; Vic E. Myer; Peter Finan; David E. Root; Thomas M. Roberts; Todd R. Golub; Keith T. Flaherty; Reinhard Dummer; Barbara Weber
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
Cell | 2009
Paul Leslie Nicklin; Philip Bergman; Bailin Zhang; Ellen Triantafellow; Henry Wang; Beat Nyfeler; Haidi Yang; Marc Hild; Charles Kung; Christopher J. Wilson; Vic E. Myer; Jeffrey P. MacKeigan; Jeffrey A. Porter; Y. Karen Wang; Lewis C. Cantley; Peter Finan; Leon O. Murphy
Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
Molecular Cell | 1998
Christoph J. Hengartner; Vic E. Myer; Sha-Mei Liao; Christopher J. Wilson; Sang Seok Koh; Richard A. Young
Two cyclin-dependent kinases have been identified in yeast and mammalian RNA polymerase II transcription initiation complexes. We find that the two yeast kinases are indistinguishable in their ability to phosphorylate the RNA polymerase II CTD, and yet in living cells one kinase is a positive regulator and the other a negative regulator. This paradox is resolved by the observation that the negative regulator, Srb10, is uniquely capable of phosphorylating the CTD prior to formation of the initiation complex on promoter DNA, with consequent inhibition of transcription. In contrast, the TFIIH kinase phosphorylates the CTD only after the transcription apparatus is associated with promoter DNA. These results reveal that the timing of CTD phosphorylation can account for the positive and negative functions of the two kinases and provide a model for Srb10-dependent repression of genes involved in cell type specificity, meiosis, and sugar utilization.
Nature Cell Biology | 2011
Yue Zhang; Shanming Liu; Craig Mickanin; Yan Feng; Olga Charlat; Gregory A. Michaud; Markus Schirle; Xiaoying Shi; Marc Hild; Andreas Bauer; Vic E. Myer; Peter Finan; Jeffery A. Porter; Shih-Min A. Huang; Feng Cong
The Wnt/β-catenin signalling pathway plays essential roles in embryonic development and adult tissue homeostasis, and deregulation of this pathway has been linked to cancer. Axin is a concentration-limiting component of the β-catenin destruction complex, and its stability is regulated by tankyrase. However, the molecular mechanism by which tankyrase-dependent poly(ADP-ribosyl)ation (PARsylation) is coupled to ubiquitylation and degradation of axin remains undefined. Here, we identify RNF146, a RING-domain E3 ubiquitin ligase, as a positive regulator of Wnt signalling. RNF146 promotes Wnt signalling by mediating tankyrase-dependent degradation of axin. Mechanistically, RNF146 directly interacts with poly(ADP-ribose) through its WWE domain, and promotes degradation of PARsylated proteins. Using proteomics approaches, we have identified BLZF1 and CASC3 as further substrates targeted by tankyrase and RNF146 for degradation. Thus, identification of RNF146 as a PARsylation-directed E3 ligase establishes a molecular paradigm that links tankyrase-dependent PARsylation to ubiquitylation. RNF146-dependent protein degradation may emerge as a major mechanism by which tankyrase exerts its function.
Journal of Biological Chemistry | 1998
Vic E. Myer; Richard A. Young
The RNA polymerase II holoenzyme is the form of eukaryotic RNA polymerase II that is recruited to the promoters of proteincoding genes in living cells. The exact composition of the holoenzyme is not entirely established, due in part to technical difficulties associated with purifying intact megadalton size multiprotein complexes. Nonetheless, yeast and human holoenzyme preparations have been described that consist of near stoichiometric levels of most components known to be generally involved in initiation other than TATA-binding protein (TBP) and its associated factors. We review here the functions of five major components of yeast RNA polymerase II holoenzymes: core RNA polymerase II, the general transcription factors (GTFs), the core Srb-mediator complex, the Srb10 cyclin-dependent kinase (CDK) complex, and the Swi-Snf complex (Table I). The holoenzyme concept stems from the discovery that Srb proteins are critical for regulated transcription of protein coding genes and the observation that these proteins are tightly associated with a portion of core RNA polymerase II in yeast cells (1). The genes encoding the yeast Srb proteins were discovered through a genetic screen designed to identify components of the transcription apparatus that are involved in the response to transcriptional regulators (2, 3). Attempts to purify these proteins led to the isolation of a large complex containing core RNA polymerase II, a subset of the general transcription factors, and a variety of regulatory proteins (1). This holoenzyme complex had the capacity to initiate transcription and respond to activators when supplemented with additional purified general transcription factors in vitro. A subcomplex dissociated from the holoenzyme, which contains the Srb and additional proteins, reconstituted the response to activators in a defined in vitro transcription system (4). The response to activators is especially significant as in vitro systems reconstituted with yeast GTFs and polymerase alone are not activator-responsive (5, 6). Two of the yeast Srb proteins were found to be required for transcription of most protein-coding genes, and because they are found tightly associated with the holoenzyme, it seems likely that the Srb-containing holoenzyme is the form of RNA polymerase II that is recruited to most promoters in vivo (7). RNA polymerase II holoenzymes have been purified from many eukaryotic organisms (1, 4, 8–16). The subunit composition of these different preparations differs somewhat, and these differences involve the presence or absence of two types of components: GTFs and regulatory factors. Some protocols lead to the purification of RNA polymerase II holoenzymes containing all of the GTFs (8, 9, 14), whereas other protocols generate holoenzymes in which only a single GTF (TFIIF) remains associated (4). Some yeast holoenzyme preparations contain stoichiometric levels of Swi-Snf (17), whereas others lack any detectable Swi-Snf protein (18). In the present discussion, we will make the simplifying assumption that holoenzymes in living cells resemble the more complex preparations. Thus, the holoenzyme we discuss here is composed of core RNA polymerase II, all the GTFs other than TBP (and its associated proteins), the core Srb-mediator complex, the Srb10 cyclin-dependent kinase complex, and the Swi-Snf complex (Table I).
Journal of Virology | 2009
Jason Borawski; Philip Troke; Xiaoling Puyang; Veronica Gibaja; ShanChaun Zhao; Craig Mickanin; Juliet Leighton-Davies; C. Wilson; Vic E. Myer; Ivan Cornella-Taracido; Jeremy Baryza; John A. Tallarico; Gerard Joberty; Marcus Bantscheff; Markus Schirle; Tewis Bouwmeester; Joanna E. Mathy; Kai Lin; Teresa Compton; Mark Labow; Brigitte Wiedmann; L. Alex Gaither
ABSTRACT Host factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase. Knockdown of PI4KA could inhibit the replication and/or HCV RNA levels of the two subgenomic genotype 1b clones (SG-1b and Luc-1b), two subgenomic genotype 1a clones (SG-1a and Luc-1a), JFH-1 genotype 2a infectious virus (JFH1-2a), and the genomic genotype 1a (FL-1a) replicon. In contrast, PI4KB knockdown inhibited replication and/or HCV RNA levels of Luc-1b, SG-1b, and Luc-1a replicons. The small molecule inhibitor, PIK93, was found to block subgenomic genotype 1b (Luc-1b), subgenomic genotype 1a (Luc-1a), and genomic genotype 2a (JFH1-2a) infectious virus replication in the nanomolar range. PIK93 was characterized by using quantitative chemical proteomics and in vitro biochemical assays to demonstrate PIK93 is a bone fide PI4KA and PI4KB inhibitor. Our data demonstrate that genetic or pharmacological modulation of PI4KA and PI4KB inhibits multiple genotypes of HCV and represents a novel druggable class of therapeutic targets for HCV infection.
Nature Cell Biology | 2014
William E. Dowdle; Beat Nyfeler; Jane Nagel; Robert Elling; Shanming Liu; Ellen Triantafellow; Suchithra Menon; Zuncai Wang; Ayako Honda; Gwynn Pardee; John Cantwell; Catherine Luu; Ivan Cornella-Taracido; Edmund Harrington; Peter Fekkes; Hong Lei; Qing Fang; Mary Ellen Digan; Debra Burdick; Andrew F. Powers; Stephen B. Helliwell; Simon D’Aquin; Julie Bastien; Henry Wang; Dmitri Wiederschain; Jenny Kuerth; Philip Bergman; David Schwalb; Jason R. Thomas; Savuth Ugwonali
Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4−/− mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.
PLOS ONE | 2012
Heinz Ruffner; Joëlle Sprunger; Olga Charlat; Juliet Leighton-Davies; Bianka Grosshans; Adrian Salathe; Svenja Zietzling; Valérie Beck; Maxime Therier; Andrea Isken; Yang Xie; Yue Zhang; Huaixiang Hao; Xiaoying Shi; Dong Liu; Qinhui Song; Ieuan Clay; Gabriele Hintzen; Jan S. Tchorz; Laure C. Bouchez; Gregory A. Michaud; Peter Finan; Vic E. Myer; Tewis Bouwmeester; Jeffrey A. Porter; Marc Hild; Fred Bassilana; Christian N. Parker; Feng Cong
The Wnt/β-catenin signaling pathbway controls many important biological processes. R-Spondin (RSPO) proteins are a family of secreted molecules that strongly potentiate Wnt/β-catenin signaling, however, the molecular mechanism of RSPO action is not yet fully understood. We performed an unbiased siRNA screen to identify molecules specifically required for RSPO, but not Wnt, induced β-catenin signaling. From this screen, we identified LGR4, then an orphan G protein-coupled receptor (GPCR), as the cognate receptor of RSPO. Depletion of LGR4 completely abolished RSPO-induced β-catenin signaling. The loss of LGR4 could be compensated by overexpression of LGR5, suggesting that LGR4 and LGR5 are functional homologs. We further demonstrated that RSPO binds to the extracellular domain of LGR4 and LGR5, and that overexpression of LGR4 strongly sensitizes cells to RSPO-activated β-catenin signaling. Supporting the physiological significance of RSPO-LGR4 interaction, Lgr4−/− crypt cultures failed to grow in RSPO-containing intestinal crypt culture medium. No coupling between LGR4 and heterotrimeric G proteins could be detected in RSPO-treated cells, suggesting that LGR4 mediates RSPO signaling through a novel mechanism. Identification of LGR4 and its relative LGR5, an adult stem cell marker, as the receptors of RSPO will facilitate the further characterization of these receptor/ligand pairs in regenerative medicine applications.