Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Shaler is active.

Publication


Featured researches published by Christopher R. Shaler.


Journal of Immunology | 2010

Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung.

Cherrie-Lee Small; Christopher R. Shaler; Sarah McCormick; Mangalakumari Jeyanathan; Daniela Damjanovic; Earl G. Brown; Petra C. Arck; Manel Jordana; Charu Kaushic; Ali A. Ashkar; Zhou Xing

Influenza viral infection is well-known to predispose to subsequent bacterial superinfection in the lung but the mechanisms have remained poorly defined. We have established a murine model of heterologous infections by an H1N1 influenza virus and Staphylococcus aureus. We found that indeed prior influenza infection markedly increased the susceptibility of mice to secondary S. aureus superinfection. Severe sickness and heightened bacterial infection in flu and S. aureus dual-infected animals were associated with severe immunopathology in the lung. We further found that flu-experienced lungs had an impaired NK cell response in the airway to subsequent S. aureus bacterial infection. Thus, adoptive transfer of naive NK cells to the airway of prior flu-infected mice restored flu-impaired antibacterial host defense. We identified that TNF-α production of NK cells played an important role in NK cell-mediated antibacterial host defense as NK cells in flu-experienced lungs had reduced TNF-α expression and adoptive transfer of TNF-α–deficient NK cells to the airway of flu-infected mice failed to restore flu-impaired antibacterial host defense. Defected NK cell function was found to be an upstream mechanism of depressed antibacterial activities by alveolar macrophages as contrast to naive wild-type NK cells, the NK cells from flu-infected or TNF-α–deficient mice failed to enhance S. aureus phagocytosis by alveolar macrophages. Together, our study identifies the weakened NK cell response in the lung to be a novel critical mechanism for flu-mediated susceptibility to bacterial superinfection.


American Journal of Respiratory and Critical Care Medicine | 2010

Murine airway luminal antituberculosis memory CD8 T cells by mucosal immunization are maintained via antigen-driven in situ proliferation, independent of peripheral T cell recruitment.

Mangalakumari Jeyanathan; Jingyu Mu; Sarah McCormick; Daniela Damjanovic; Cherrie-Lee Small; Christopher R. Shaler; Kapilan Kugathasan; Zhou Xing

RATIONALE The airway luminal memory CD8 T cells induced by respiratory mucosal immunization in a murine model have been found to be critical to antituberculosis immunity. However, the mechanisms of their maintenance on airway mucosal surface still remain poorly understood. OBJECTIVES Using a model of adenovirus-based intranasal immunization we investigated the immune property and the mechanisms of maintenance of airway luminal CD8 T cells. METHODS Immune properties of airway luminal Mycobacterium tuberculosis antigen-specific CD8 T cells were examined. Proliferation of airway luminal CD8 T cells was determined by in vivo T cell-labeling techniques. The role of peripheral T cell recruitment in maintaining airway luminal CD8 T cells was investigated by blocking lymphocyte trafficking from lymphoid and peripheral tissues. The requirement of M. tuberculosis antigens for in situ T cell proliferation was evaluated using a T cell transfer approach. An airway M. tuberculosis challenge model was used to study the relationship between CD8 T cell-mediated protection and peripheral T cell recruitment. MEASUREMENTS AND MAIN RESULTS Intranasal immunization leads to elicitation of persisting M. tuberculosis antigen-specific CD8 T cells in the airway lumen, which display an activated effector memory phenotype different from those in peripheral tissues. Airway luminal T cells continuously proliferate in an antigen-dependent manner, and can be maintained even in the absence of peripheral T cell recruitment. The lungs equipped with such CD8 T cells are protected from airway M. tuberculosis challenge independent of both peripheral T cell supply and CD4 T cells. CONCLUSIONS Vaccine-inducible airway luminal antituberculosis memory CD8 T cells are self-renewable in an antigen-dependent manner, and can be maintained independent of peripheral T cell supply.


Mucosal Immunology | 2012

Mechanisms of delayed anti-tuberculosis protection in the lung of parenteral BCG-vaccinated hosts: a critical role of airway luminal T cells.

Carly Horvath; Christopher R. Shaler; Mangalakumari Jeyanathan; Anna Zganiacz; Zhou Xing

The immune mechanisms underlying unsatisfactory pulmonary mucosal protection by parenteral Bacillus Calmette–Guérin (BCG) immunization remain poorly understood. We found that parenteral BCG immunization failed to elicit airway luminal T cells (ALT) whereas it induced significant T cells in the lung interstitium. After Mycobacterium tuberculosis (M.tb) challenge, ALT remained missing for 10 days. The lack of ALT correlated with lack of lung protection for 14 days post-M.tb challenge. To further investigate the role of ALT, ALT were elicited in BCG-immunized animals by intranasal inoculation of M.tb culture-filtrate (CF) proteins. Installment of ALT by CF restored protection in the early phases of M.tb infection, which was linked to rapid increases in ALT, but not in lung interstitial T cells. Also, adoptive transfer of T cells to the airway lumen of BCG-immunized animals also accelerated protection. This study thus provides novel evidence that unsatisfactory lung protection by parenteral BCG immunization is due to delayed ALT recruitment after pulmonary M.tb exposure.


Frontiers in Immunology | 2013

Within the Enemy’s Camp: contribution of the granuloma to the dissemination, persistence and transmission of Mycobacterium tuberculosis

Christopher R. Shaler; Carly Horvath; Mangalakumari Jeyanathan; Zhou Xing

Pulmonary tuberculosis, caused by Mycobacterium tuberculosis (M.tb) represents a leading global health concern, with 8.7 million newly emerging cases, and 1.4 million reported deaths annually. Despite an estimated one third of the world’s population being infected, relatively few infected individuals ever develop active clinical disease. The ability of the host to remain latently infected while preventing disease is thought to be due to the generation of a robust type 1 immune response in the lung, capable of controlling, but not clearing, M.tb. A key feature of the type 1 immune response to M.tb is the formation of immune cellular aggregates termed granuloma. The granuloma structure has long been considered a hallmark of host’s protective response toward M.tb. Historically, a correlative relationship between granuloma formation/maintenance and bacterial control has been seen in models where disrupted granuloma formation or structure was found to be fatal. Despite this established relationship much about the granuloma’s role in M.tb immunity remains unknown. Recent publications suggest that the granuloma actually aids the persistence of M.tb and that the development of a necrotic granuloma is essential to person-to-person transmission. Our group and others have recently demonstrated that enclosed within the granuloma is a population of immunologically altered antigen-presenting cells and T lymphocyte populations. Of note, the ability of these populations to produce type 1 cytokines such as interferon-gamma, and bactericidal products including nitric oxide, are significantly reduced, while remaining competent to produce high levels immunosuppressive interleukin-10. These observations indicate that although the chronic granuloma represents a highly unique environment, it is more similar to that of a tumor than an active site of bacterial control. In this review we will explore what is known about this unique environment and its contribution to the persistence of M.tb.


Clinical & Developmental Immunology | 2012

Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis.

Christopher R. Shaler; Carly Horvath; Rocky Lai; Zhou Xing

Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.


Mucosal Immunology | 2013

Differentially imprinted innate immunity by mucosal boost vaccination determines antituberculosis immune protective outcomes, independent of T-cell immunity

Mangalakumari Jeyanathan; Daniela Damjanovic; Christopher R. Shaler; Rocky Lai; M Wortzman; C Yin; Anna Zganiacz; Brian D. Lichty; Zhou Xing

Homologous and heterologous parenteral prime–mucosal boost immunizations have shown great promise in combating mucosal infections such as tuberculosis and AIDS. However, their immune mechanisms remain poorly defined. In particular, it is still unclear whether T-cell and innate immunity may be independently affected by these immunization modalities and how it impacts immune protective outcome. Using two virus-based tuberculosis vaccines (adenovirus (Ad) and vesicular stomatitis virus (VSV) vectors), we found that while both homologous (Ad/Ad) and heterologous (Ad/VSV) respiratory mucosal boost immunizations elicited similar T-cell responses in the lung, they led to drastically different immune protective outcomes. Compared with Ad-based boosting, VSV-based boosting resulted in poorly enhanced protection against tuberculosis. Such inferior protection was associated with differentially imprinted innate phagocytes, particularly the CD11c+CD11b+/− cells, in the lung. We identified heightened type 1 interferon (IFN) responses to be the triggering mechanism. Thus, increased IFN-β severely blunted interleukin-12 responses in infected phagocytes, which in turn impaired their nitric oxide production and antimycobacterial activities. Our study reveals that vaccine vectors may differentially imprint innate cells at the mucosal site of immunization, which can impact immune-protective outcome, independent of T-cell immunity, and it is of importance to determine both T-cell and innate cell immunity in vaccine studies.


Mucosal Immunology | 2014

Pulmonary M. tuberculosis infection delays Th1 immunity via immunoadaptor DAP12-regulated IRAK-M and IL-10 expression in antigen- presenting cells

Mangalakumari Jeyanathan; Sarah McCormick; Rocky Lai; Sam Afkhami; Christopher R. Shaler; Carly Horvath; Daniela Damjanovic; Anna Zganiacz; Nicole G. Barra; Ali A. Ashkar; Manel Jordana; Naoko Aoki; Zhou Xing

Interaction of mycobacteria with the host leads to retarded expression of T helper cell type 1 (Th1) immunity in the lung. However, the immune mechanisms remain poorly understood. Using in vivo and in vitro models of Mycobacterium tuberculosis (M. tb) infection, we find the immunoadaptor DAP12 (DNAX-activating protein of 12 kDa) in antigen-presenting cells (APCs) to be critically involved in this process. Upon infection of APCs, DAP12 is required for IRAK-M (interleukin-1 receptor-associated kinase M) expression, which in turn induces interleukin-10 (IL-10) and an immune-suppressed phenotype of APCs, thus leading to suppressed Th1 cell activation. Lack of DAP12 reduces APC IL-10 production and increases their Th1 cell-activating capability, resulting in expedited Th1 responses and enhanced protection. On the other hand, adoptively transferred DAP12-competent APCs suppress Th1 cell activation within DAP12-deficient hosts, and blockade of IL-10 aborts the ability of DAP12-competent APCs to suppress Th1 activation. Our study identifies the DAP12/IRAK-M/IL-10 to be a novel molecular pathway in APCs exploited by mycobacterial pathogens, allowing infection a foothold in the lung.


PLOS ONE | 2013

Continuous and discontinuous cigarette smoke exposure differentially affects protective Th1 immunity against pulmonary tuberculosis.

Christopher R. Shaler; Carly Horvath; Sarah McCormick; Mangalakumari Jeyanathan; Amandeep Khera; Anna Zganiacz; Joanna Kasinska; Martin R. Stämpfli; Zhou Xing

Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.


Journal of Gene Medicine | 2010

Respiratory mucosal immunization with adenovirus gene transfer vector induces helper CD4 T cell-independent protective immunity

Jingyu Mu; Mangalakumari Jeyanathan; Christopher R. Shaler; Carly Horvath; Daniela Damjanovic; Anna Zganiacz; Kapilan Kugathasan; Sarah McCormick; Zhou Xing

Virus‐vectored vaccine is a powerful activator of CD8 T cell‐mediated immunity and is especially amenable to respiratory mucosal immunization, offering hopes for use in humans with diminished helper CD4 T cell function. However, whether virus‐mediated mucosal immunization can produce immune protective CD8 T cells without the CD4 T cell help remains to be investigated.


Journal of Immunology | 2008

Mucosally Delivered Dendritic Cells Activate T Cells Independently of IL-12 and Endogenous APCs

Sarah McCormick; Michael Santosuosso; Cherrie-Lee Small; Christopher R. Shaler; Xizhong Zhang; Mangalakumari Jeyanathan; Jingyu Mu; Shunsuke Takenaka; Patricia Ngai; Jack Gauldie; Yonghong Wan; Zhou Xing

In vitro manipulated dendritic cells (DC) have increasingly been used as a promising vaccine formulation against cancer and infectious disease. However, improved understanding of the immune mechanisms is needed for the development of safe and efficacious mucosal DC immunization. We have developed a murine model of respiratory mucosal immunization by using a genetically manipulated DC vaccine. Within 24 h of intranasal delivery, the majority of vaccine DCs migrated to the lung mucosa and draining lymph nodes and elicited a significant level of T cells capable of IFN-γ secretion and CTL in the airway lumen as well as substantial T cell responses in the spleen. And such T cell responses were associated with enhanced protection against respiratory mucosal intracellular bacterial challenge. In comparison, parenteral i.m. DC immunization did not elicit marked airway luminal T cell responses and immune protection regardless of strong systemic T cell activation. Although repeated mucosal DC delivery boosted Ag-specific T cells in the airway lumen, added benefits to CD8 T cell activation and immune protection were not observed. By using MHC-deficient vaccine DCs, we further demonstrated that mucosal DC immunization-mediated CD8 and CD4 T cell activation does not require endogenous DCs. By using IL-12-deficient vaccine DCs, we also observed that IL-12−/− DCs failed to migrate to the lymph nodes but remained capable of T cell activation. Our observations indicate that mucosal delivery of vaccine DCs represents an effective approach to enhance mucosal T cell immunity, which may operate independent of vaccine IL-12 and endogenous DCs.

Collaboration


Dive into the Christopher R. Shaler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge