Carly Horvath
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carly Horvath.
Mucosal Immunology | 2012
Carly Horvath; Christopher R. Shaler; Mangalakumari Jeyanathan; Anna Zganiacz; Zhou Xing
The immune mechanisms underlying unsatisfactory pulmonary mucosal protection by parenteral Bacillus Calmette–Guérin (BCG) immunization remain poorly understood. We found that parenteral BCG immunization failed to elicit airway luminal T cells (ALT) whereas it induced significant T cells in the lung interstitium. After Mycobacterium tuberculosis (M.tb) challenge, ALT remained missing for 10 days. The lack of ALT correlated with lack of lung protection for 14 days post-M.tb challenge. To further investigate the role of ALT, ALT were elicited in BCG-immunized animals by intranasal inoculation of M.tb culture-filtrate (CF) proteins. Installment of ALT by CF restored protection in the early phases of M.tb infection, which was linked to rapid increases in ALT, but not in lung interstitial T cells. Also, adoptive transfer of T cells to the airway lumen of BCG-immunized animals also accelerated protection. This study thus provides novel evidence that unsatisfactory lung protection by parenteral BCG immunization is due to delayed ALT recruitment after pulmonary M.tb exposure.
Frontiers in Immunology | 2013
Christopher R. Shaler; Carly Horvath; Mangalakumari Jeyanathan; Zhou Xing
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis (M.tb) represents a leading global health concern, with 8.7 million newly emerging cases, and 1.4 million reported deaths annually. Despite an estimated one third of the world’s population being infected, relatively few infected individuals ever develop active clinical disease. The ability of the host to remain latently infected while preventing disease is thought to be due to the generation of a robust type 1 immune response in the lung, capable of controlling, but not clearing, M.tb. A key feature of the type 1 immune response to M.tb is the formation of immune cellular aggregates termed granuloma. The granuloma structure has long been considered a hallmark of host’s protective response toward M.tb. Historically, a correlative relationship between granuloma formation/maintenance and bacterial control has been seen in models where disrupted granuloma formation or structure was found to be fatal. Despite this established relationship much about the granuloma’s role in M.tb immunity remains unknown. Recent publications suggest that the granuloma actually aids the persistence of M.tb and that the development of a necrotic granuloma is essential to person-to-person transmission. Our group and others have recently demonstrated that enclosed within the granuloma is a population of immunologically altered antigen-presenting cells and T lymphocyte populations. Of note, the ability of these populations to produce type 1 cytokines such as interferon-gamma, and bactericidal products including nitric oxide, are significantly reduced, while remaining competent to produce high levels immunosuppressive interleukin-10. These observations indicate that although the chronic granuloma represents a highly unique environment, it is more similar to that of a tumor than an active site of bacterial control. In this review we will explore what is known about this unique environment and its contribution to the persistence of M.tb.
Clinical & Developmental Immunology | 2012
Christopher R. Shaler; Carly Horvath; Rocky Lai; Zhou Xing
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.
Mucosal Immunology | 2014
Mangalakumari Jeyanathan; Sarah McCormick; Rocky Lai; Sam Afkhami; Christopher R. Shaler; Carly Horvath; Daniela Damjanovic; Anna Zganiacz; Nicole G. Barra; Ali A. Ashkar; Manel Jordana; Naoko Aoki; Zhou Xing
Interaction of mycobacteria with the host leads to retarded expression of T helper cell type 1 (Th1) immunity in the lung. However, the immune mechanisms remain poorly understood. Using in vivo and in vitro models of Mycobacterium tuberculosis (M. tb) infection, we find the immunoadaptor DAP12 (DNAX-activating protein of 12 kDa) in antigen-presenting cells (APCs) to be critically involved in this process. Upon infection of APCs, DAP12 is required for IRAK-M (interleukin-1 receptor-associated kinase M) expression, which in turn induces interleukin-10 (IL-10) and an immune-suppressed phenotype of APCs, thus leading to suppressed Th1 cell activation. Lack of DAP12 reduces APC IL-10 production and increases their Th1 cell-activating capability, resulting in expedited Th1 responses and enhanced protection. On the other hand, adoptively transferred DAP12-competent APCs suppress Th1 cell activation within DAP12-deficient hosts, and blockade of IL-10 aborts the ability of DAP12-competent APCs to suppress Th1 activation. Our study identifies the DAP12/IRAK-M/IL-10 to be a novel molecular pathway in APCs exploited by mycobacterial pathogens, allowing infection a foothold in the lung.
PLOS ONE | 2013
Christopher R. Shaler; Carly Horvath; Sarah McCormick; Mangalakumari Jeyanathan; Amandeep Khera; Anna Zganiacz; Joanna Kasinska; Martin R. Stämpfli; Zhou Xing
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.
Journal of Gene Medicine | 2010
Jingyu Mu; Mangalakumari Jeyanathan; Christopher R. Shaler; Carly Horvath; Daniela Damjanovic; Anna Zganiacz; Kapilan Kugathasan; Sarah McCormick; Zhou Xing
Virus‐vectored vaccine is a powerful activator of CD8 T cell‐mediated immunity and is especially amenable to respiratory mucosal immunization, offering hopes for use in humans with diminished helper CD4 T cell function. However, whether virus‐mediated mucosal immunization can produce immune protective CD8 T cells without the CD4 T cell help remains to be investigated.
American Journal of Pathology | 2011
Christopher R. Shaler; Kapilan Kugathasan; Sarah McCormick; Daniela Damjanovic; Carly Horvath; Cherrie-Lee Small; Mangalakumari Jeyanathan; Xiao Chen; Ping-Chang Yang; Zhou Xing
The granuloma, a hallmark of host defense against pulmonary mycobacterial infection, has long been believed to be an active type 1 immune environment. However, the mechanisms regarding why granuloma fails to eliminate mycobacteria even in immune-competent hosts, have remained largely unclear. By using a model of pulmonary Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, we have addressed this issue by comparing the immune responses within the airway luminal and granuloma compartments. We found that despite having a similar immune cellular profile to that in the airway lumen, the granuloma displayed severely suppressed type 1 immune cytokine but enhanced chemokine responses. Both antigen-presenting cells (APCs) and T cells in granuloma produced fewer type 1 immune molecules including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and nitric oxide. As a result, the granuloma APCs developed a reduced capacity to phagocytose mycobacteria and to induce T-cell proliferation. To examine the molecular mechanisms, we compared the levels of immune suppressive cytokine IL-10 in the airway lumen and granuloma and found that both granuloma APCs and T cells produced much more IL-10. Thus, IL-10 deficiency restored type 1 immune activation within the granuloma while having a minimal effect within the airway lumen. Hence, our study provides the first experimental evidence that, contrary to the conventional belief, the BCG-induced lung granuloma represents a symbiotic host-microbe microenvironment characterized by suppressed type 1 immune activation.
European Journal of Immunology | 2014
Rocky Lai; Mangalakumari Jeyanathan; Christopher R. Shaler; Daniela Damjanovic; Amandeep Khera; Carly Horvath; Ali A. Ashkar; Zhou Xing
The immune mechanisms underlying delayed induction of Th1‐type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune‐modulating strategy can accelerate Th1‐type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed. This results in a delay in the subsequent downstream immune responses including the migration of antigen‐bearing DCs to the draining lymph node (dLN), the Th1‐cell priming in dLN, and the recruitment of Th1 cells to the lung. However, single lung mucosal exposure to the TLR agonist FimH postinfection is able to accelerate protective Th1‐type immunity via facilitating DC migration to the lung and draining lymph nodes, enhancing DC antigen presentation and Th1‐cell priming. These findings hold implications for the development of immunotherapeutic and vaccination strategies and suggest that enhancement of early innate immune activation is a viable option for improving Th1‐type immunity against pulmonary mycobacterial diseases.
Journal of Immunology | 2011
Sarah McCormick; Christopher R. Shaler; Cherrie-Lee Small; Carly Horvath; Daniela Damjanovic; Earl G. Brown; Naoko Aoki; Toshiyuki Takai; Zhou Xing
Immunopathology is a major cause of influenza-associated morbidity and mortality worldwide. However, the role and regulatory mechanisms of CD4 T cells in severe lung immunopathology following acute influenza infection are poorly understood. In this paper, we report that the emergence of immunopathogenic CD4 T cells is under the control of a transmembrane immunoadaptor DAP12 pathway during influenza infection. We find that the mice lacking DAP12 have unaltered viral clearance but easily succumb to influenza infection as a result of uncontrolled immunopathology. Such immunopathology is associated with markedly increased CD4 T cells displaying markedly increased cytotoxicity and Fas ligand expression. Furthermore, the immunopathogenic property of these CD4 T cells is transferrable. Thus, depletion of CD4 T cells or abrogation of Fas/Fas ligand signaling pathway improves survival and immunopathology. We further find that DAP12 expressed by dendritic cells plays an important role in controlling the immunopathogenic CD4 T cells during influenza infection. Our findings identify a novel pathway that controls the level of immune-pathogenic CD4 T cells during acute influenza infection.
PLOS ONE | 2012
Xuerong Chen; Fangming Xiu; Carly Horvath; Daniela Damjanovic; Niroshan Thanthrige-Don; Mangalakumari Jeyanathan; Zhou Xing
Tuberculosis (TB) vaccine-induced airway luminal T cells (ALT) have recently been shown to be critical to host defense against pulmonary TB. However, the mechanisms that maintain memory ALT remain poorly understood. In particular, whether respiratory mucosal exposure to environmental agents such as endotoxin may regulate the size of vaccine-induced ALT population is still unclear. Using a murine model of respiratory genetic TB vaccination and respiratory LPS exposure, we have addressed this issue in the current study. We have found that single or repeated LPS exposure increases the number of antigen-specific ALT which are capable of robust secondary responses to pulmonary mycobacterial challenge. To investigate the potential mechanisms by which LPS exposure modulates the ALT population, we have examined the role of ALT proliferation and peripheral T cell recruitment. We have found that LPS exposure-increased ALT is not dependent on increased ALT proliferation as respiratory LPS exposure does not significantly increase the rate of proliferation of ALT. But rather, we find it to be dependent upon the recruitment of peripheral T cells into the airway lumen as blockade of peripheral T cell supplies markedly reduces the initially increased ALT. Thus, our data suggest that environmental exposure to airborne agents such as endotoxin has a profound modulatory effect on TB vaccine-elicited T cells within the respiratory tract. Our study provides a new, M.tb antigen-independent mechanism by which the respiratory mucosal anti-TB memory T cells may be maintained.