Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Gleason is active.

Publication


Featured researches published by Scott Gleason.


IEEE Transactions on Geoscience and Remote Sensing | 2005

Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing

Scott Gleason; Stephen Hodgart; Yiping Sun; Christine Gommenginger; Stephen Mackin; Mounir Adjrad; Martin Unwin

We will show that ocean-reflected signals from the global positioning system (GPS) navigation satellite constellation can be detected from a low-earth orbiting satellite and that these signals show rough correlation with independent measurements of the sea winds. We will present waveforms of ocean-reflected GPS signals that have been detected using the experiment onboard the United Kingdoms Disaster Monitoring Constellation satellite and describe the processing methods used to obtain their delay and Doppler power distributions. The GPS bistatic radar experiment has made several raw data collections, and reflected GPS signals have been found on all attempts. The down linked data from an experiment has undergone extensive processing, and ocean-scattered signals have been mapped across a wide range of delay and Doppler space revealing characteristics which are known to be related to geophysical parameters such as surface roughness and wind speed. Here we will discuss the effects of integration time, reflection incidence angle and examine several delay-Doppler signal maps. The signals detected have been found to be in general agreement with an existing model (based on geometric optics) and with limited independent measurements of sea winds; a brief comparison is presented here. These results demonstrate that the concept of using bistatically reflected global navigation satellite systems signals from low earth orbit is a viable means of ocean remote sensing.


IEEE Geoscience and Remote Sensing Magazine | 2014

Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity

Valery U. Zavorotny; Scott Gleason; Estel Cardellach; Adriano Camps

In traditional GNSS applications, signals arriving at a receivers antenna from nearby reflecting surfaces (multipath) interfere with the signals received directly from the satellites which can often result in a reduction of positioning accuracy. About two decades ago researchers produced an idea to use reflected GNSS signals for remote-sensing applications. In this new concept a GNSS transmitter together with a receiver capable of processing GNSS scattered signals of opportunity becomes bistatic radar. By properly processing the scattered signal, this system can be configured either as an altimeter, or a scatterometer allowing us to estimate such characteristics of land or ocean surface as height, roughness, or dielectric properties of the underlying media. From there, using various methods the geophysical parameters can be estimated such as mesoscale ocean topography, ocean surface winds, soil moisture, vegetation, snowpack, and sea ice. Depending on the platform of the GNSS receiver (stationary, airborne, or spaceborne), the capabilities of this technique and specific methods for processing of the reflected signals may vary. In this tutorial, we describe this new remotesensing technique, discuss some of the interesting results that have been already obtained, and give an overview of current and planned spacecraft missions.


international geoscience and remote sensing symposium | 2012

The CYGNSS nanosatellite constellation hurricane mission

Christopher S. Ruf; Scott Gleason; Zorana Jelenak; Stephen J. Katzberg; Aaron J. Ridley; Randall Rose; John Scherrer; Valery U. Zavorotny

The Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission concept focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. CYGNSS consists of 8 GPS bistatic radar receivers deployed on separate nanosatellites. The primary science driver is rapid sampling of ocean surface winds in the inner core of tropical cyclones.


Geophysical Research Letters | 2009

Analysis of GNSS-R Delay-Doppler Maps from the UK-DMC satellite over the ocean

M.P. Clarizia; Christine Gommenginger; Scott Gleason; Meric A. Srokosz; C. Galdi; M. Di Bisceglie

A study of the retrieval of sea surface roughness using Global Navigation Satellite System-Reflectometry (GNSS-R) from satellite is presented. Delay- Doppler Maps (DDMs) from the SSTL UK-DMC satellite are analyzed to retrieve directional Mean Square Slopes (MSSs). Results are compared to theoretically-derived MSSs and in situ measurements from co-located buoys of the National Data Buoy Center (NDBC), showing good agreement in most cases. Here, the whole DDM, a more complete source of information, is exploited for the first time using satellite GNSS-R data. These are potentially able to provide high spatial and temporal sampling, and therefore offer an improved way to observe wind and waves by means of a very modest instrument.


Bulletin of the American Meteorological Society | 2016

New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection

Christopher S. Ruf; Robert Atlas; Paul S. Chang; Maria Paola Clarizia; James L. Garrison; Scott Gleason; Stephen J. Katzberg; Zorana Jelenak; Joel T. Johnson; Sharanya J. Majumdar; Andrew O'Brien; Derek J. Posselt; Aaron J. Ridley; Randall Rose; Valery U. Zavorotny

AbstractThe Cyclone Global Navigation Satellite System (CYGNSS) is a new NASA earth science mission scheduled to be launched in 2016 that focuses on tropical cyclones (TCs) and tropical convection. The mission’s two primary objectives are the measurement of ocean surface wind speed with sufficient temporal resolution to resolve short-time-scale processes such as the rapid intensification phase of TC development and the ability of the surface measurements to penetrate through the extremely high precipitation rates typically encountered in the TC inner core. The mission’s goal is to support significant improvements in our ability to forecast TC track, intensity, and storm surge through better observations and, ultimately, better understanding of inner-core processes. CYGNSS meets its temporal sampling objective by deploying a constellation of eight satellites. Its ability to see through heavy precipitation is enabled by its operation as a bistatic radar using low-frequency GPS signals. The mission will depl...


Remote Sensing | 2010

Towards Sea Ice Remote Sensing with Space Detected GPS Signals: Demonstration of Technical Feasibility and Initial Consistency Check Using Low Resolution Sea Ice Information

Scott Gleason

This paper presents two space detected Global Positioning System (GPS)signals reflected off sea ice and compares the returned power profiles with independent estimates of ice concentration provided by the Advanced Microwave Scanning Radiometer (AMSR-E) and sea ice charts from the National Ice Center. The results of the analysis show significantly different signals received for each of the GPS reflections. For the first collection,comparisons with ice concentration estimates from AMSR-E and the National Ice Centers reveal a very strong GPS signal return off high concentration sea ice. The second GPS data collection occurs over a region of changing sea ice concentration, and the GPS signal level responds at roughly the same point that the AMSR-E data and National Ice Center charts indicate a change in ice concentration. However, the very strong signal of the first GPS collection is not consistent in magnitude with similar ice concentrations during the secondGPS data collection. This demonstration shows the potential and the difficulties of this new technique as a valuable low-cost compliment to existing sea ice monitoring instruments. Additionally, a general method for calculating the location of the specular reflection point on the Earth’s surface and the received Doppler frequencies and code phase delays is presented as part of an on-board open-loop signal tracking technique.


IEEE Transactions on Geoscience and Remote Sensing | 2016

Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System

Scott Gleason; Christopher S. Ruf; Maria Paola Clarizia; Andrew O'Brien

This paper develops and characterizes the algorithms used to generate the Level 1 (L1) science data products of the Cyclone Global Navigation Satellite System (CYGNSS) mission. The L1 calibration consists of two parts: the Level 1a (L1a) calibration converts the raw Level 0 delay-Doppler maps (DDMs) of processed counts into received power in units of watts. The L1a DDMs are then converted to Level 1b DDMs of bistatic radar cross section values by unwrapping the forward scattering model and generating two additional DDMs: one of unnormalized bistatic radar cross section values (in units of square meters) and a second of bin-by-bin effective scattering areas. The L1 data products are generated in such a way as to allow for flexible processing of variable areas of the DDM (which correspond to different regions on the surface). The application of the L1 data products to the generation of input observables for the CYGNSS Level 2 (L2) wind retrievals is also presented. This includes a demonstration of using only near-specular DDM bins to calculate a normalized bistatic radar cross section (unitless, i.e., m2/m2) over a subset of DDM pixels, or DDM area. Additionally, an extensive term-by-term error analysis has been performed using this example extent of the DDM to help quantify the sensitivity of the L1 calibration as a function of key internal instrument and external parameters in the near-specular region.


ieee aerospace conference | 2013

The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission

Christopher S. Ruf; Scott Gleason; Zorana Jelenak; Stephen J. Katzberg; Aaron J. Ridley; Randy Rose; John Scherrer; Valery U. Zavorotny

The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites.


IEEE Transactions on Geoscience and Remote Sensing | 2013

Space-Based GNSS Scatterometry: Ocean Wind Sensing Using an Empirically Calibrated Model

Scott Gleason

This paper presents a method and experimental results for near-surface wind sensing using reflected Global Navigation Satellite Systems (GNSS) signals received on a spacecraft. The estimation method proposed involves four steps. First, the bistatic radar cross section (BRCS) of the received signal is estimated from the measurements. Second, the BRCS measurements are calibrated to agree with existing theoretical and empirical wind-wave models. Next, a geometric optics-based scattering model is used to estimate the sea surface slopes, based on the reflection geometry and the measured BRCS. Finally, the surface winds are estimated using an empirically derived function relating the surface mean square slopes to near-surface wind speed. The accuracy of the proposed inversion technique is then tested using a set of 25 space-based GNSS reflection measurements over a range of wind speeds. These measurements were all taken in the proximity of ocean buoys which provided in situ ocean wind speed information. The wind estimates from the buoys were then compared with the wind retrievals made from the measurements and found to be accurate to a root-mean-square error of 1.84 m/s. Additionally, the potential error sources in the measurements are analyzed, including a simulation of the effects of wind direction on the BRCS measurements. This first demonstration of space-based GNSS scatterometry using a small set of sample measurements will hopefully provide a benchmark and example for future experiments.


Journal of Navigation | 2005

GPS Receiver Operations on the Disaster Monitoring Constellation Satellites

Takuji Ebinuma; Elizabeth Rooney; Scott Gleason; Martin Unwin

The Disaster Monitoring Constellation (DMC) is an international Earth observation programme to provide a rapid global remote sensing service for the monitoring and mitigation of natural and man-made disasters. Although the Global Positioning System (GPS) was originally designed for terrestrial and air applications, satellite operations have benefited greatly from the use of on-board GPS receivers. This paper describes the GPS receiver operations on the DMC satellites, performance analysis, lessons learned, and upgrades planned for the future.

Collaboration


Dive into the Scott Gleason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Unwin

Surrey Satellite Technology

View shared research outputs
Top Co-Authors

Avatar

Mounir Adjrad

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis M. Akos

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Randall Rose

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge