Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher V. Grant is active.

Publication


Featured researches published by Christopher V. Grant.


Methods in Enzymology | 2005

NMR experiments on aligned samples of membrane proteins.

A.A.De Angelis; D.H. Jones; Christopher V. Grant; Sang Ho Park; Michael F. Mesleh; Stanley J. Opella

NMR methods can be used to determine the structures of membrane proteins. Lipids can be chosen so that protein-containing micelles, bicelles, or bilayers are available as samples. All three types of samples can be aligned weakly or strongly, depending on their rotational correlation time. Solution NMR methods can be used with weakly aligned micelle and small bicelle samples. Solid-state NMR methods can be used with mechanically aligned bilayer and magnetically aligned bicelle samples.


Journal of the American Chemical Society | 2014

High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion.

B. Scott Perrin; Ye Tian; Riqiang Fu; Christopher V. Grant; Eduard Y. Chekmenev; William E. Wieczorek; Alexander E. Dao; Robert M. Hayden; Caitlin M. Burzynski; Richard M. Venable; Mukesh Sharma; Stanley J. Opella; Richard W. Pastor; Myriam Cotten

While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of 1H–15N dipolar couplings and 15N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (∼25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Å more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ∼1.2–3.6 Å below the plane defined by the C2 atoms of the lipid acyl chains.


Biophysical Journal | 2011

On the Combined Analysis of 2H and 15N/1H Solid-State NMR Data for Determination of Transmembrane Peptide Orientation and Dynamics

Vitaly V. Vostrikov; Christopher V. Grant; Stanley J. Opella; Roger E. Koeppe

The dynamics of membrane-spanning peptides have a strong affect on the solid-state NMR observables. We present a combined analysis of ²H-alanine quadrupolar splittings together with ¹⁵N/(1)H dipolar couplings and ¹⁵N chemical shifts, using two models to treat the dynamics, for the systematic evaluation of transmembrane peptides based on the GWALP23 sequence (acetyl-GGALW(LA)₆LWLAGA-amide). The results indicate that derivatives of GWALP23 incorporating diverse guest residues adopt a range of apparent tilt angles that span 5°-35° in lipid bilayer membranes. By comparing individual and combined analyses of specifically ²H- or ¹⁵N-labeled peptides incorporated in magnetically or mechanically aligned lipid bilayers, we examine the influence of data-set size/identity, and of explicitly modeled dynamics, on the deduced average orientations of the peptides. We conclude that peptides with small apparent tilt values (<∼10°) can be fitted by extensive families of solutions, which can be narrowed by incorporating additional ¹⁵N as well as ²H restraints. Conversely, peptides exhibiting larger tilt angles display more narrow distributions of tilt and rotation that can be fitted using smaller sets of experimental constraints or even with ²H or ¹⁵N data alone. Importantly, for peptides that tilt significantly more than 10° from the bilayer-normal, the contribution from rigid body dynamics can be approximated by a principal order parameter.


Journal of Magnetic Resonance | 2009

A Modified Alderman–Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

Christopher V. Grant; Yuan Yang; Mira Glibowicka; Chin H. Wu; Sang Ho Park; Charles M. Deber; Stanley J. Opella

The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the (1)H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B(1) field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the (1)H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.


Journal of Magnetic Resonance | 2009

A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples

Chin H. Wu; Christopher V. Grant; Gabriel A. Cook; Sang Ho Park; Stanley J. Opella

A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.


Journal of Magnetic Resonance | 2010

Probes for high field solid-state NMR of lossy biological samples

Christopher V. Grant; Chin H. Wu; Stanley J. Opella

In solid-state NMR hydrated samples of biopolymers are susceptible to radio frequency heating and have a significant impact on probe tuning frequency and performance parameters such as sensitivity. These considerations are increasingly important as magnetic field strengths increase with improved magnet technology. Recent developments in the design, construction, and performance of probes for solid-state NMR experiments on stationary lossy biological samples at high magnetic fields are reviewed.


Biophysical Journal | 2011

Amphipathic Antimicrobial Piscidin in Magnetically Aligned Lipid Bilayers

Anna A. De Angelis; Christopher V. Grant; Matthew K. Baxter; Jason A. McGavin; Stanley J. Opella; Myriam Cotten

The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. (31)P NMR and double-resonance (1)H/(15)N NMR experiments performed between 25 °C and 61 °C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61 °C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.


Journal of Biological Inorganic Chemistry | 2000

ESEEM studies of succinate:ubiquinone reductase from Paracoccus denitrificans.

Shao-Ching Hung; Christopher V. Grant; Jeffrey M. Peloquin; A. Reginald Waldeck; R. David Brit; Sunney I. Chan

Abstract. Electron spin-echo envelope modulation (ESEEM) spectroscopy has been performed in order to obtain structural information about the environment of the reduced [2Fe-2S] cluster (S-1 center), the oxidized [3Fe-4S] cluster (S-3 center), and the flavin semiquinone radical in purified succinate:ubiquinone reductase from Paracoccus denitrificans. Spectral simulations of the ESEEM data from the reduced [2Fe-2S] yielded nuclear quadrupole interaction parameters that are indicative of peptide nitrogens. We also observed a weak interaction between the oxidized [3Fe-4S] cluster and a peptide 14N. There was no evidence for coordination of any of the Fe atoms to 14N atoms of imidazole rings. The ESEEM data from the flavin semiquinone radical were more complicated. Here, evidence was obtained for interactions between the unpaired electron and only the two nitrogen atoms in the flavin ring.


Journal of Magnetic Resonance | 2010

1H-13C Separated Local Field Spectroscopy of Uniformly 13C Labeled Peptides and Proteins

Eugene Lin; Chin H. Wu; Yuan Yang; Christopher V. Grant; Stanley J. Opella

By incorporating homonuclear decoupling on both the (1)H and (13)C channels it is feasible to obtain high-resolution two-dimensional separated local field spectra of peptides and proteins that are 100% labeled with (13)C. Dual-PISEMO (Polarization Inversion Spin Exchange Modulated Observation) can be performed as a conventional two-dimensional experiment, or with windowed detection as a one-dimensional experiment that offers flexibility as a building block for shiftless and other multidimensional triple-resonance experiments with the inclusion of (15)N irradiation. The triple-resonance MAGC probe used to perform these experiments at 500 MHz is described.


arXiv: High Energy Physics - Experiment | 2017

Opportunities With Decay-At-Rest Neutrinos From Decay-In-Flight Neutrino Beams

Christopher V. Grant; B. R. Littlejohn

Neutrino beam facilities, like spallation neutron facilities, produce copious quantities of neutrinos from the decay at rest of mesons and muons. The viability of decay-in-flight neutrino beams as sites for decay-at-rest neutrino studies has been investigated by calculating expected low-energy neutrino fluxes from the existing Fermilab NuMI beam facility. Decay-at-rest neutrino production in NuMI is found to be roughly equivalent per megawatt to that of spallation facilities, and is concentrated in the facilitys target hall and beam stop regions. Interaction rates in 5 and 60 ton liquid argon detectors at a variety of existing and hypothetical locations along the beamline are found to be comparable to the largest existing decay-at-rest datasets for some channels. The physics implications and experimental challenges of such a measurement are discussed, along with prospects for measurements at targeted facilities along a future Fermilab long-baseline neutrino beam.

Collaboration


Dive into the Christopher V. Grant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. David Britt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chin H. Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Ho Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucio Frydman

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge