Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Wong is active.

Publication


Featured researches published by Christopher Wong.


The Lancet | 2001

Brain dopamine and obesity

Gene-Jack Wang; Nora D. Volkow; Jean Logan; Naoml R Pappas; Christopher Wong; Wel Zhu; Noelwah Netusll; Joanna S. Fowler

BACKGROUND The cerebral mechanisms underlying the behaviours that lead to pathological overeating and obesity are poorly understood. Dopamine, a neurotransmitter that modulates rewarding properties of food, is likely to be involved. To test the hypothesis that obese individuals have abnormalities in brain dopamine activity we measured the availability of dopamine D2 receptors in brain. METHODS Brain dopamine D2 receptor availability was measured with positron emission tomography (PET) and [C-11]raclopride (a radioligand for the dopamine D2 receptor). Bmax/Kd (ratio of the distribution volumes in striatum to that in cerebellum minus 1) was used as a measure of dopamine D2 receptor availability. Brain glucose metabolism was also assessed with 2-deoxy-2[18F]fluoro-D-glucose (FDG). FINDINGS Striatal dopamine D2 receptor availability was significantly lower in the ten obese individuals (2.47 [SD 0.36]) than in controls (2.99 [0.41]; p < or = 0.0075). In the obese individuals body mass index (BMI) correlated negatively with the measures of D2 receptors (r=0.84; p < or = 0.002); the individuals with the lowest D2 values had the largest BMI. By contrast, neither whole brain nor striatal metabolism differed between obese individuals and controls, indicating that striatal reductions in D2 receptors were not due to a systematic reduction in radiotracer delivery. INTERPRETATION The availability of dopamine D2 receptor was decreased in obese individuals in proportion to their BMI. Dopamine modulates motivation and reward circuits and hence dopamine deficiency in obese individuals may perpetuate pathological eating as a means to compensate for decreased activation of these circuits. Strategies aimed at improving dopamine function may be beneficial in the treatment of obese individuals.


The Journal of Neuroscience | 2006

Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Jean Logan; Anna-Rose Childress; Millard Jayne; Yeming Ma; Christopher Wong

The ability of drugs of abuse to increase dopamine in nucleus accumbens underlies their reinforcing effects. However, preclinical studies have shown that with repeated drug exposure neutral stimuli paired with the drug (conditioned stimuli) start to increase dopamine by themselves, which is an effect that could underlie drug-seeking behavior. Here we test whether dopamine increases occur to conditioned stimuli in human subjects addicted to cocaine and whether this is associated with drug craving. We tested eighteen cocaine-addicted subjects using positron emission tomography and [11C]raclopride (dopamine D2 receptor radioligand sensitive to competition with endogenous dopamine). We measured changes in dopamine by comparing the specific binding of [11C]raclopride when subjects watched a neutral video (nature scenes) versus when they watched a cocaine-cue video (scenes of subjects smoking cocaine). The specific binding of [11C]raclopride in dorsal (caudate and putamen) but not in ventral striatum (in which nucleus accumbens is located) was significantly reduced in the cocaine-cue condition and the magnitude of this reduction correlated with self-reports of craving. Moreover, subjects with the highest scores on measures of withdrawal symptoms and of addiction severity that have been shown to predict treatment outcomes, had the largest dopamine changes in dorsal striatum. This provides evidence that dopamine in the dorsal striatum (region implicated in habit learning and in action initiation) is involved with craving and is a fundamental component of addiction. Because craving is a key contributor to relapse, strategies aimed at inhibiting dopamine increases from conditioned responses are likely to be therapeutically beneficial in cocaine addiction.


JAMA | 2009

Evaluating Dopamine Reward Pathway in ADHD: Clinical Implications

Nora D. Volkow; Gene-Jack Wang; Scott H. Kollins; Tim Wigal; Jeffrey H. Newcorn; Frank Telang; Joanna S. Fowler; Wei Zhu; Jean Logan; Yeming Ma; Kith Pradhan; Christopher Wong; James M. Swanson

CONTEXT Attention-deficit/hyperactivity disorder (ADHD)--characterized by symptoms of inattention and hyperactivity-impulsivity--is the most prevalent childhood psychiatric disorder that frequently persists into adulthood, and there is increasing evidence of reward-motivation deficits in this disorder. OBJECTIVE To evaluate biological bases that might underlie a reward/motivation deficit by imaging key components of the brain dopamine reward pathway (mesoaccumbens). DESIGN, SETTING, AND PARTICIPANTS We used positron emission tomography to measure dopamine synaptic markers (transporters and D(2)/D(3) receptors) in 53 nonmedicated adults with ADHD and 44 healthy controls between 2001-2009 at Brookhaven National Laboratory. MAIN OUTCOME MEASURES We measured specific binding of positron emission tomographic radioligands for dopamine transporters (DAT) using [(11)C]cocaine and for D(2)/D(3) receptors using [(11)C]raclopride, quantified as binding potential (distribution volume ratio -1). RESULTS For both ligands, statistical parametric mapping showed that specific binding was lower in ADHD than in controls (threshold for significance set at P < .005) in regions of the dopamine reward pathway in the left side of the brain. Region-of-interest analyses corroborated these findings. The mean (95% confidence interval [CI] of mean difference) for DAT in the nucleus accumbens for controls was 0.71 vs 0.63 for those with ADHD (95% CI, 0.03-0.13, P = .004) and in the midbrain for controls was 0.16 vs 0.09 for those with ADHD (95% CI, 0.03-0.12; P < or = .001); for D(2)/D(3) receptors, the mean accumbens for controls was 2.85 vs 2.68 for those with ADHD (95% CI, 0.06-0.30, P = .004); and in the midbrain, it was for controls 0.28 vs 0.18 for those with ADHD (95% CI, 0.02-0.17, P = .01). The analysis also corroborated differences in the left caudate: the mean DAT for controls was 0.66 vs 0.53 for those with ADHD (95% CI, 0.04-0.22; P = .003) and the mean D(2)/D(3) for controls was 2.80 vs 2.47 for those with ADHD (95% CI, 0.10-0.56; P = .005) and differences in D(2)/D(3) in the hypothalamic region, with controls having a mean of 0.12 vs 0.05 for those with ADHD (95% CI, 0.02-0.12; P = .004). Ratings of attention correlated with D(2)/D(3) in the accumbens (r = 0.35; 95% CI, 0.15-0.52; P = .001), midbrain (r = 0.35; 95% CI, 0.14-0.52; P = .001), caudate (r = 0.32; 95% CI, 0.11-0.50; P = .003), and hypothalamic (r = 0.31; CI, 0.10-0.49; P = .003) regions and with DAT in the midbrain (r = 0.37; 95% CI, 0.16-0.53; P < or = .001). CONCLUSION A reduction in dopamine synaptic markers associated with symptoms of inattention was shown in the dopamine reward pathway of participants with ADHD.


NeuroImage | 2008

Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Panayotis K. Thanos; Jean Logan; David Alexoff; Yu-Shin Ding; Christopher Wong; Yeming Ma; Kith Pradhan

Dopamines role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m(2)) and compared it to that in twelve non-obese controls. PET was used with [(11)C]raclopride to assess D2 receptors and with [(18)F]FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food.


JAMA | 2009

Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

Nora D. Volkow; Joanna S. Fowler; Jean Logan; David Alexoff; Wei Zhu; Frank Telang; Gene-Jack Wang; Millard Jayne; Jacob M. Hooker; Christopher Wong; Barbara Hubbard; Pauline Carter; Donald Warner; Payton King; Colleen Shea; Youwen Xu; Lisa Muench; Karen Apelskog-Torres

CONTEXT Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. OBJECTIVE To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. DESIGN, SETTING, AND PARTICIPANTS Positron emission tomography with [(11)C]raclopride (D(2)/D(3) radioligand sensitive to changes in endogenous dopamine) and [(11)C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007-2008) at Brookhaven National Laboratory. MAIN OUTCOME MEASURES Primary outcomes were changes in dopamine D(2)/D(3) receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. RESULTS Modafinil decreased mean (SD) [(11)C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P = .02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P = .002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P = .02), reflecting increases in extracellular dopamine. Modafinil also decreased [(11)C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P < .001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P < .001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P = .001), reflecting occupancy of dopamine transporters. CONCLUSIONS In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing use of modafinil, these results highlight the need for heightened awareness for potential abuse of and dependence on modafinil in vulnerable populations.


Life Sciences | 1999

Regional brain metabolic activation during craving elicited by recall of previous drug experiences

Gene Jack Wang; Nora D. Volkow; Joanna S. Fowler; Paula Cervany; Robert Hitzemann; Naomi R. Pappas; Christopher Wong; Christoph Felder

Cocaine cues elicit craving and physiological responses. The cerebral circuits involved in these are poorly understood. The purpose of this study was to assess the relation between regional brain activation and cocaine cue elicited responses. Thirteen right-handed cocaine abusers were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice; during an interactive interview about neutral themes and during an interactive interview about cocaine themes designed to elicit cocaine craving. In parallel the behavioral (rated from 0: felt nothing to 10: felt extreme) and cardiovascular responses were recorded. During the cocaine theme interview subjects reported higher self reports for cocaine craving (+2.5+/-3.3, p < or = 0.02) and had higher heart rates (+4.7+/-7.2%, p < or = 0.001), systolic (+4+/-4%, p < or = 0.0001), and diastolic blood pressures (+2.6+/-3.8%, p < or = 0.003) than during the neutral interview. Absolute and relative metabolic values in the orbitofrontal (+16.4+/-17.1%, p < or = 0.005; +11.3+/-14.3%, p < or = 0.008) and left insular cortex (+21.6+/-19.6%, p < or = 0.002; +16.7+/-19.7%, p < or = 0.01) and relative values in cerebellum (+17.9+/-14.8%, p < or = 0.0008) were higher during the cocaine theme than during the neutral theme interview. Relative metabolic values in the right insular region (p < or = 0.0008) were significantly correlated with self reports of cocaine craving. Activation of the temporal insula, a brain region involved with autonomic control, and of the orbitofrontal cortex, a brain region involved with expectancy and reinforcing salience of stimuli, during the cocaine theme support their involvement with craving in cocaine addicted subjects.


The Journal of Neuroscience | 2007

Profound Decreases in Dopamine Release in Striatum in Detoxified Alcoholics: Possible Orbitofrontal Involvement

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Jean Logan; Millard Jayne; Yeming Ma; Kith Pradhan; Christopher Wong

The value of rewards (natural rewards and drugs) is associated with dopamine increases in the nucleus accumbens and varies as a function of context. The prefrontal cortex has been implicated in the context dependency of rewards and in the fixated high value that drugs have in addiction, although the mechanisms are not properly understood. Here we test the hypothesis that the prefrontal cortex regulates the value of rewards by modulating dopamine increases in nucleus accumbens and that this regulation is disrupted in addicted subjects. We used positron emission tomography to evaluate the activity of the prefrontal cortex (measuring brain glucose metabolism with [18F]fluorodeoxyglucose) and dopamine increases (measured with [11C]raclopride, a D2/D3 receptor ligand with binding that is sensitive to endogenous dopamine) induced by the stimulant drug methylphenidate in 20 controls and 20 detoxified alcoholics, most of whom smoked. In all subjects, methylphenidate significantly increased dopamine in striatum. In ventral striatum (where the nucleus accumbens is located) and in putamen, dopamine increases were associated with the rewarding effects of methylphenidate (drug liking and high) and were profoundly attenuated in alcoholics (70 and 50% lower than controls, respectively). In controls, but not in alcoholics, metabolism in orbitofrontal cortex (region involved with salience attribution) was negatively associated with methylphenidate-induced dopamine increases in ventral striatum. These results are consistent with the hypothesis that the orbitofrontal cortex modulates the value of rewards by regulating the magnitude of dopamine increases in the ventral striatum and that disruption of this regulation may underlie the decreased sensitivity to rewards in addicted subjects.


The Journal of Neuroscience | 2005

Activation of Orbital and Medial Prefrontal Cortex by Methylphenidate in Cocaine-Addicted Subjects But Not in Controls: Relevance to Addiction

Nora D. Volkow; Gene Jack Wang; Yeming Ma; Joanna S. Fowler; Christopher Wong; Yu-Shin Ding; Robert Hitzemann; James M. Swanson; Peter W. Kalivas

Drugs of abuse are rewarding to addicted and nonaddicted subjects, but they trigger craving and compulsive intake only in addicted subjects. Here, we used positron emission tomography (PET) and [18F]deoxyglucose to compare the brain metabolic responses (marker of brain function) of cocaine-addicted subjects (n = 21) and controls (n = 15) to identify brain regions that are uniquely activated in addicted subjects by intravenous methylphenidate (a drug that cocaine-addicted subjects report to be similar to cocaine). In parallel, we also measured the changes in dopamine (DA) induced by intravenous methylphenidate (using PET and [11C]raclopride) in the striatum and in the thalamus. Metabolic responses between groups differed significantly only in the right medial orbital prefrontal cortex [Brodmanns area (BA) 25 and medial BA 11], where methylphenidate increased metabolism in addicted subjects but decreased metabolism in controls. These changes were associated in all subjects with increased “desire for methylphenidate” and in the addicted subjects with “cocaine craving.” In addicted subjects, increases in BA 25 were also associated with mood elevation. Methylphenidate-induced increases in metabolism in the medial orbital prefrontal cortex were associated with its increase of DA in the thalamus but not in the striatum. These findings provide evidence that enhanced sensitivity of BA 25 (region involved with emotional reactivity) and BA 11 (region involved with salience attribution and motivation) in cocaine-addicted subjects may underlie the strong emotional response to the drug and the intense desire to procure it that results in craving and compulsive drug intake. It also suggests that the mesothalamic DA pathway may contribute to these processes.


Obesity | 2009

Inverse association between BMI and prefrontal metabolic activity in healthy adults.

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Rita Z. Goldstein; Nelly Alia-Klein; Jean Logan; Christopher Wong; Panayotis K. Thanos; Yemine Ma; Kith Pradhan

Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2‐deoxy‐2[18F]fluoro‐d‐glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19–37 kg/m2) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.


NeuroImage | 2010

Cognitive Control of Drug Craving Inhibits Brain Reward Regions in Cocaine Abusers

Nora D. Volkow; Joanna S. Fowler; Gene-Jack Wang; Frank Telang; Jean Logan; Millard Jayne; Yeming Ma; Kith Pradhan; Christopher Wong; James M. Swanson

Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-d-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3+/-3, post 6+/-3; p<0.001) but not when subjects were instructed to inhibit craving (pre 3+/-2, post 3+/-3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p<0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p<0.005), which was associated with right inferior frontal activation (r=-0.62, p<0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

Collaboration


Dive into the Christopher Wong's collaboration.

Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Joanna S. Fowler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gene-Jack Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Telang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Millard Jayne

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dardo Tomasi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yeming Ma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kith Pradhan

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge