Nora D. Volkow
National Institute on Drug Abuse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nora D. Volkow.
Neuropsychopharmacology | 2010
George F. Koob; Nora D. Volkow
Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: ‘binge/intoxication’, ‘withdrawal/negative affect’, and ‘preoccupation/anticipation’ (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex–dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
The Lancet | 2001
Gene-Jack Wang; Nora D. Volkow; Jean Logan; Naoml R Pappas; Christopher Wong; Wel Zhu; Noelwah Netusll; Joanna S. Fowler
BACKGROUND The cerebral mechanisms underlying the behaviours that lead to pathological overeating and obesity are poorly understood. Dopamine, a neurotransmitter that modulates rewarding properties of food, is likely to be involved. To test the hypothesis that obese individuals have abnormalities in brain dopamine activity we measured the availability of dopamine D2 receptors in brain. METHODS Brain dopamine D2 receptor availability was measured with positron emission tomography (PET) and [C-11]raclopride (a radioligand for the dopamine D2 receptor). Bmax/Kd (ratio of the distribution volumes in striatum to that in cerebellum minus 1) was used as a measure of dopamine D2 receptor availability. Brain glucose metabolism was also assessed with 2-deoxy-2[18F]fluoro-D-glucose (FDG). FINDINGS Striatal dopamine D2 receptor availability was significantly lower in the ten obese individuals (2.47 [SD 0.36]) than in controls (2.99 [0.41]; p < or = 0.0075). In the obese individuals body mass index (BMI) correlated negatively with the measures of D2 receptors (r=0.84; p < or = 0.002); the individuals with the lowest D2 values had the largest BMI. By contrast, neither whole brain nor striatal metabolism differed between obese individuals and controls, indicating that striatal reductions in D2 receptors were not due to a systematic reduction in radiotracer delivery. INTERPRETATION The availability of dopamine D2 receptor was decreased in obese individuals in proportion to their BMI. Dopamine modulates motivation and reward circuits and hence dopamine deficiency in obese individuals may perpetuate pathological eating as a means to compensate for decreased activation of these circuits. Strategies aimed at improving dopamine function may be beneficial in the treatment of obese individuals.
Journal of Cerebral Blood Flow and Metabolism | 1996
Jean Logan; Joanna S. Fowler; Nora D. Volkow; Gene Jack Wang; Yu-Shin Ding; David Alexoff
The distribution volume ratio (DVR), which is a linear function of receptor availability, is widely used as a model parameter in imaging studies. The DVR corresponds to the ratio of the DV of a receptor-containing region to a nonreceptor region and generally requires the measurement of an arterial input function. Here we propose a graphical method for determining the DVR that does not require blood sampling. This method uses data from a nonreceptor region with an average tissue-to-plasma efflux constant k2 to approximate the plasma integral. Data from positron emission tomography studies with [15C]raclopride (n = 20) and [11C]d-threo-methylphenidate ([11C]dMP) (n = 8) in which plasma data were taken and used to compare results from two graphical methods, one that uses plasma data and one that does not. k2 was 0.163 and 0.051 min−1 for [11C]raclopride and [11C]dMP, respectively. Results from both methods were very similar, and the average percentage difference between the methods was −0.11% for [11C]raclopride and 0.46% for [11C]dMP for DVR of basal ganglia (BG) to cerebellum (CB). Good agreement between the two methods was also achieved for DVR images created by both methods. This technique provides an alternative method of analysis not requiring blood sampling that gives equivalent results for the two ligands studied. It requires initial studies with blood sampling to determine the average kinetic constant and to test applicability. In some cases, it may be possible to neglect the b̅2 term if the BG/CB ratio becomes reasonably constant for a sufficiently long period of time over the course of the experiment.
Nature Reviews Neuroscience | 2011
Rita Z. Goldstein; Nora D. Volkow
The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.
The Journal of Neuroscience | 2006
Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Jean Logan; Anna-Rose Childress; Millard Jayne; Yeming Ma; Christopher Wong
The ability of drugs of abuse to increase dopamine in nucleus accumbens underlies their reinforcing effects. However, preclinical studies have shown that with repeated drug exposure neutral stimuli paired with the drug (conditioned stimuli) start to increase dopamine by themselves, which is an effect that could underlie drug-seeking behavior. Here we test whether dopamine increases occur to conditioned stimuli in human subjects addicted to cocaine and whether this is associated with drug craving. We tested eighteen cocaine-addicted subjects using positron emission tomography and [11C]raclopride (dopamine D2 receptor radioligand sensitive to competition with endogenous dopamine). We measured changes in dopamine by comparing the specific binding of [11C]raclopride when subjects watched a neutral video (nature scenes) versus when they watched a cocaine-cue video (scenes of subjects smoking cocaine). The specific binding of [11C]raclopride in dorsal (caudate and putamen) but not in ventral striatum (in which nucleus accumbens is located) was significantly reduced in the cocaine-cue condition and the magnitude of this reduction correlated with self-reports of craving. Moreover, subjects with the highest scores on measures of withdrawal symptoms and of addiction severity that have been shown to predict treatment outcomes, had the largest dopamine changes in dorsal striatum. This provides evidence that dopamine in the dorsal striatum (region implicated in habit learning and in action initiation) is involved with craving and is a fundamental component of addiction. Because craving is a key contributor to relapse, strategies aimed at inhibiting dopamine increases from conditioned responses are likely to be therapeutically beneficial in cocaine addiction.
Nature Neuroscience | 2005
Nora D. Volkow; Roy A. Wise
To the degree that drugs and food activate common reward circuitry in the brain, drugs offer powerful tools for understanding the neural circuitry that mediates food-motivated habits and how this circuitry may be hijacked to cause appetitive behaviors to go awry.
The New England Journal of Medicine | 2014
Nora D. Volkow; Ruben Baler; Wilson M. Compton
As marijuana use becomes legal in some states, the dominant public opinion is that marijuana is a harmless source of mood alteration. Although the harms associated with marijuana use have not been well studied, enough information is available to cause concern.
Molecular Psychiatry | 2004
Nora D. Volkow; Joanna S. Fowler; G. Wang; Swanson Jm
The involvement of dopamine in drug reinforcement is well recognized but its role in drug addiction is much less clear. Imaging studies have shown that the reinforcing effects of drugs of abuse in humans are contingent upon large and fast increases in dopamine that mimic but exceed in the intensity and duration those induced by dopamine cell firing to environmental events. In addition, imaging studies have also documented a role of dopamine in motivation, which appears to be encoded both by fast as well as smooth DA increases. Since dopamine cells fire in response to salient stimuli, the supraphysiological activation by drugs is likely to be experienced as highly salient (driving attention, arousal conditioned learning and motivation) and may also reset the thresholds required for environmental events to activate dopamine cells. Indeed, imaging studies have shown that in drug-addicted subjects, dopamine function is markedly disrupted (decreases in dopamine release and in dopamine D2 receptors in striatum) and this is associated with reduced activity of the orbitofrontal cortex (neuroanatomical region involved with salience attribution and motivation and implicated in compulsive behaviors) and the cingulate gyrus (neuroanatomical region involved with inhibitory control and attention and implicated in impulsivity). However, when addicted subjects are exposed to drug-related stimuli, these hypoactive regions become hyperactive in proportion to the expressed desire for the drug. We postulate that decreased dopamine function in addicted subjects results in decreased sensitivity to nondrug-related stimuli (including natural reinforcers) and disrupts frontal inhibition, both of which contribute to compulsive drug intake and impaired inhibitory control. These findings suggest new strategies for pharmacological and behavioral treatments, which focus on enhancing DA function and restoring brain circuits disrupted by chronic drug use to help motivate the addicted subject in activities that provide alternative sources of reinforcement, counteract conditioned responses, enhance their ability to control their drive to take drugs and interfere with their compulsive administration.
Journal of Clinical Investigation | 2003
Nora D. Volkow; Joanna S. Fowler; Gene-Jack Wang
Imaging studies have revealed neurochemical and functional changes in the brains of drug-addicted subjects that provide new insights into the mechanisms underlying addiction. Neurochemical studies have shown that large and fast increases in dopamine are associated with the reinforcing effects of drugs of abuse, but also that after chronic drug abuse and during withdrawal, brain dopamine function is markedly decreased and these decreases are associated with dysfunction of prefrontal regions (including orbitofrontal cortex and cingulate gyrus). The changes in brain dopamine function are likely to result in decreased sensitivity to natural reinforcers since dopamine also mediates the reinforcing effects of natural reinforcers and on disruption of frontal cortical functions, such as inhibitory control and salience attribution. Functional imaging studies have shown that during drug intoxication, or during craving, these frontal regions become activated as part of a complex pattern that includes brain circuits involved with reward (nucleus accumbens), motivation (orbitofrontal cortex), memory (amygdala and hippocampus), and cognitive control (prefrontal cortex and cingulate gyrus). Here, we integrate these findings and propose a model that attempts to explain the loss of control and compulsive drug intake that characterize addiction. Specifically, we propose that in drug addiction the value of the drug and drug-related stimuli is enhanced at the expense of other reinforcers. This is a consequence of conditioned learning and of the resetting of reward thresholds as an adaptation to the high levels of stimulation induced by drugs of abuse. In this model, during exposure to the drug or drug-related cues, the memory of the expected reward results in overactivation of the reward and motivation circuits while decreasing the activity in the cognitive control circuit. This contributes to an inability to inhibit the drive to seek and consume the drug and results in compulsive drug intake. This model has implications for therapy, for it suggests a multi-prong approach that targets strategies to decrease the rewarding properties of drugs, to enhance the rewarding properties of alternative reinforcers, to interfere with conditioned-learned associations, and to strengthen cognitive control in the treatment of drug addiction.
Neuropharmacology | 2009
Nora D. Volkow; J.S. Fowler; G.J. Wang; Ruben Baler; F. Telang
Dopamine is involved in drug reinforcement but its role in addiction is less clear. Here we describe PET imaging studies that investigate dopamines involvement in drug abuse in the human brain. In humans the reinforcing effects of drugs are associated with large and fast increases in extracellular dopamine, which mimic those induced by physiological dopamine cell firing but are more intense and protracted. Since dopamine cells fire in response to salient stimuli, supraphysiological activation by drugs is experienced as highly salient (driving attention, arousal, conditioned learning and motivation) and with repeated drug use may raise the thresholds required for dopamine cell activation and signaling. Indeed, imaging studies show that drug abusers have marked decreases in dopamine D2 receptors and in dopamine release. This decrease in dopamine function is associated with reduced regional activity in orbitofrontal cortex (involved in salience attribution; its disruption results in compulsive behaviors), cingulate gyrus (involved in inhibitory control; its disruption results in impulsivity) and dorsolateral prefrontal cortex (involved in executive function; its disruption results in impaired regulation of intentional actions). In parallel, conditioning triggered by drugs leads to enhanced dopamine signaling when exposed to conditioned cues, which then drives the motivation to procure the drug in part by activation of prefrontal and striatal regions. These findings implicate deficits in dopamine activity-inked with prefrontal and striatal deregulation-in the loss of control and compulsive drug intake that results when the addicted person takes the drugs or is exposed to conditioned cues. The decreased dopamine function in addicted individuals also reduces their sensitivity to natural reinforcers. Therapeutic interventions aimed at restoring brain dopaminergic tone and activity of cortical projection regions could improve prefrontal function, enhance inhibitory control and interfere with impulsivity and compulsive drug administration while helping to motivate the addicted person to engage in non-drug related behaviors.