Xuehui Huang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xuehui Huang.
Nature Genetics | 2010
Xuehui Huang; Xinghua Wei; Tao Sang; Qiang Zhao; Qi Feng; Yan Zhao; Canyang Li; Chuanrang Zhu; Tingting Lu; Zhiwu Zhang; Meng Li; Danlin Fan; Yunli Guo; Ahong Wang; Lu Wang; Liuwei Deng; Wenjun Li; Yiqi Lu; Qijun Weng; K. Liu; Tao Huang; Taoying Zhou; Yufeng Jing; Wei Li; Zhang Lin; Edward S. Buckler; Qian Qian; Qifa Zhang; Jiayang Li; Bin Han
Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is important to world food security. Here we have identified ∼3.6 million SNPs by sequencing 517 rice landraces and constructed a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS explained ∼36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical biparental cross-mapping for dissecting complex traits in rice.
Nature | 2012
Xuehui Huang; Nori Kurata; Xinghua Wei; Zi-Xuan Wang; Ahong Wang; Qiang Zhao; Yan Zhao; K. Liu; Hengyun Lu; Wenjun Li; Yunli Guo; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Chuanrang Zhu; Tao Huang; Lei Zhang; Yongchun Wang; Lei Feng; Hiroyasu Furuumi; Takahiko Kubo; Toshie Miyabayashi; Xiaoping Yuan; Qun Xu; Guojun Dong; Qilin Zhan; Canyang Li; Asao Fujiyama; Atsushi Toyoda
Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.
Nature Genetics | 2012
Xuehui Huang; Yan Zhao; Xinghua Wei; Canyang Li; Ahong Wang; Qiang Zhao; Wenjun Li; Yunli Guo; Liuwei Deng; Chuanrang Zhu; Danlin Fan; Yiqi Lu; Qijun Weng; K. Liu; Taoying Zhou; Yufeng Jing; Lizhen Si; Guojun Dong; Tao Huang; Tingting Lu; Qi Feng; Qian Qian; Jiayang Li; Bin Han
A high-density haplotype map recently enabled a genome-wide association study (GWAS) in a population of indica subspecies of Chinese rice landraces. Here we extend this methodology to a larger and more diverse sample of 950 worldwide rice varieties, including the Oryza sativa indica and Oryza sativa japonica subspecies, to perform an additional GWAS. We identified a total of 32 new loci associated with flowering time and with ten grain-related traits, indicating that the larger sample increased the power to detect trait-associated variants using GWAS. To characterize various alleles and complex genetic variation, we developed an analytical framework for haplotype-based de novo assembly of the low-coverage sequencing data in rice. We identified candidate genes for 18 associated loci through detailed annotation. This study shows that the integrated approach of sequence-based GWAS and functional genome annotation has the potential to match complex traits to their causal polymorphisms in rice.
Annual Review of Plant Biology | 2014
Xuehui Huang; Bin Han
Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencing-based genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Weibo Xie; Qi Feng; Huihui Yu; Xuehui Huang; Qiang Zhao; Yongzhong Xing; Sibin Yu; Bin Han; Qifa Zhang
Bar-coded multiplexed sequencing approaches based on new-generation sequencing technologies provide capacity to sequence a mapping population in a single sequencing run. However, such approaches usually generate low-coverage and error-prone sequences for each line in a population. Thus, it is a significant challenge to genotype individual lines in a population for linkage map construction based on low-coverage sequences without the availability of high-quality genotype data of the parental lines. In this paper, we report a method for constructing ultrahigh-density linkage maps composed of high-quality single-nucleotide polymorphisms (SNPs) based on low-coverage sequences of recombinant inbred lines. First, all potential SNPs were identified to obtain drafts of parental genotypes using a maximum parsimonious inference of recombination, making maximum use of SNP information found in the entire population. Second, high-quality SNPs were identified by filtering out low-quality ones by permutations involving resampling of windows of SNPs followed by Bayesian inference. Third, lines in the mapping population were genotyped using the high-quality SNPs assisted by a hidden Markov model. With 0.05× genome sequence per line, an ultrahigh-density linkage map composed of bins of high-quality SNPs using 238 recombinant inbred lines derived from a cross between two rice varieties was constructed. Using this map, a quantitative trait locus for grain width (GW5) was localized to its presumed genomic region in a bin of 200 kb, confirming the accuracy and quality of the map. This method is generally applicable in genetic map construction with low-coverage sequence data.
Nature Genetics | 2013
Zhenhua Peng; Ying Lu; Lubin Li; Qiang Zhao; Qi Feng; Zhimin Gao; Hengyun Lu; Tao Hu; Na Yao; K. Liu; Yan Li; Danlin Fan; Yunli Guo; Wenjun Li; Yiqi Lu; Qijun Weng; Congcong Zhou; Lei Zhang; Tao Huang; Yan Zhao; Chuanrang Zhu; Xing'e Liu; Xuewen Yang; Tao Wang; Kun Miao; Caiyun Zhuang; Xiaolu Cao; Wenli Tang; Guanshui Liu; Yingli Liu
Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. However, no species in the Bambusoideae subfamily has been sequenced. Here, we report a high-quality draft genome sequence of moso bamboo (P. heterocycla var. pubescens). The 2.05-Gb assembly covers 95% of the genomic region. Gene prediction modeling identified 31,987 genes, most of which are supported by cDNA and deep RNA sequencing data. Analyses of clustered gene families and gene collinearity show that bamboo underwent whole-genome duplication 7–12 million years ago. Identification of gene families that are key in cell wall biosynthesis suggests that the whole-genome duplication event generated more gene duplicates involved in bamboo shoot development. RNA sequencing analysis of bamboo flowering tissues suggests a potential connection between drought-responsive and flowering genes.
Nature Genetics | 2013
Guanqing Jia; Xuehui Huang; Hui Zhi; Yan Zhao; Qiang Zhao; Wenjun Li; Yang Chai; Lifang Yang; K. Liu; Hengyun Lu; Chuanrang Zhu; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Yunli Guo; Tao Huang; Lei Zhang; Tingting Lu; Qi Feng; Hangfei Hao; Hongkuan Liu; Ping Lu; Ning Zhang; Yuhui Li; Erhu Guo; Shujun Wang; Suying Wang; Jinrong Liu; Wenfei Zhang
Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.
Nature Genetics | 2016
Lizhen Si; Jiaying Chen; Xuehui Huang; Hao Gong; Jianghong Luo; Qingqing Hou; Taoying Zhou; Tingting Lu; Jingjie Zhu; Yingying Shangguan; Erwang Chen; Chengxiang Gong; Qiang Zhao; Yufeng Jing; Yan Zhao; Yan Li; Lingling Cui; Danlin Fan; Yiqi Lu; Qijun Weng; Yongchun Wang; Qilin Zhan; K. Liu; Xinghua Wei; Kyungsook An; Gynheung An; Bin Han
Although genetic diversity has a cardinal role in domestication, abundant natural allelic variations across the rice genome that cause agronomically important differences between diverse varieties have not been fully explored. Here we implement an approach integrating genome-wide association testing with functional analysis on grain size in a diverse rice population. We report that a major quantitative trait locus, GLW7, encoding the plant-specific transcription factor OsSPL13, positively regulates cell size in the grain hull, resulting in enhanced rice grain length and yield. We determine that a tandem-repeat sequence in the 5′ UTR of OsSPL13 alters its expression by affecting transcription and translation and that high expression of OsSPL13 is associated with large grains in tropical japonica rice. Further analysis indicates that the large-grain allele of GLW7 in tropical japonica rice was introgressed from indica varieties under artificial selection. Our study demonstrates that new genes can be effectively identified on the basis of genome-wide association data.
Theoretical and Applied Genetics | 2011
Lu Wang; Ahong Wang; Xuehui Huang; Qiang Zhao; Guojun Dong; Qian Qian; Tao Sang; Bin Han
Mapping chromosome regions responsible for quantitative phenotypic variation in recombinant populations provides an effective means to characterize the genetic basis of complex traits. We conducted a quantitative trait loci (QTL) analysis of 150 rice recombinant inbred lines (RILs) derived from a cross between two cultivars, Oryza sativa ssp. indica cv. 93-11 and Oryza sativa ssp. japonica cv. Nipponbare. The RILs were genotyped through next-generation sequencing, which accurately determined the recombination breakpoints and provided a new type of genetic markers, recombination bins, for QTL analysis. We detected 49 QTL with phenotypic effect ranging from 3.2 to 46.0% for 14 agronomics traits. Five QTL of relatively large effect (14.6–46.0%) were located on small genomic regions, where strong candidate genes were found. The analysis using sequencing-based genotyping thus offers a powerful solution to map QTL with high resolution. Moreover, the RILs developed in this study serve as an excellent system for mapping and studying genetic basis of agricultural and biological traits of rice.
Nature Communications | 2015
Xuehui Huang; Shihua Yang; Junyi Gong; Yan Zhao; Qi Feng; Hao Gong; Wenjun Li; Qilin Zhan; Benyi Cheng; Junhui Xia; Neng Chen; Zhongna Hao; K. Liu; Chuanrang Zhu; Tao Huang; Qiang Zhao; Lei Zhang; Danlin Fan; Congcong Zhou; Yiqi Lu; Qijun Weng; Zi-Xuan Wang; Jiayang Li; Bin Han
Exploitation of heterosis is one of the most important applications of genetics in agriculture. However, the genetic mechanisms of heterosis are only partly understood, and a global view of heterosis from a representative number of hybrid combinations is lacking. Here we develop an integrated genomic approach to construct a genome map for 1,495 elite hybrid rice varieties and their inbred parental lines. We investigate 38 agronomic traits and identify 130 associated loci. In-depth analyses of the effects of heterozygous genotypes reveal that there are only a few loci with strong overdominance effects in hybrids, but a strong correlation is observed between the yield and the number of superior alleles. While most parental inbred lines have only a small number of superior alleles, high-yielding hybrid varieties have several. We conclude that the accumulation of numerous rare superior alleles with positive dominance is an important contributor to the heterotic phenomena.