Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chuong Dinh is active.

Publication


Featured researches published by Chuong Dinh.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Intravaginal ring eluting tenofovir disoproxil fumarate completely protects macaques from multiple vaginal simian-HIV challenges

James M. Smith; Rachna Rastogi; Ryan S. Teller; Priya Srinivasan; Pedro M. M. Mesquita; Umadevi Nagaraja; Janet M. McNicholl; R. Michael Hendry; Chuong Dinh; Amy Martin; Betsy C. Herold; Patrick F. Kiser

Significance Topical prevention of HIV is designed to pharmacologically interrupt sexual transmission at the genital mucosa. Attempts at preventing transmission in women using vaginal gels have yielded disappointing results in part because of poor rates of adherence. Controlled topical drug delivery using intravaginal ring technology should improve efficacy and adherence by providing sustained mucosal delivery of antiretrovirals. In this paper, we describe a reservoir intravaginal ring that delivers tenofovir disoproxil fumarate (TDF) for 1 month. The ring protected pigtailed macaques from weekly vaginal simian–human immunodeficiency virus challenges for 4 mo. The sterilizing performance of this drug delivery system supports the concept that an intravaginal ring delivering TDF could be an effective tool for prevention of HIV sexual transmission in women. Topical preexposure prophylaxis interrupts HIV transmission at the site of mucosal exposure. Intermittently dosed vaginal gels containing the HIV-1 reverse transcriptase inhibitor tenofovir protected pigtailed macaques depending on the timing of viral challenge relative to gel application. However, modest or no protection was observed in clinical trials. Intravaginal rings (IVRs) may improve efficacy by providing long-term sustained drug delivery leading to constant mucosal antiretroviral concentrations and enhancing adherence. Although a few IVRs have entered the clinical pipeline, 100% efficacy in a repeated macaque vaginal challenge model has not been achieved. Here we describe a reservoir IVR technology that delivers the tenofovir prodrug tenofovir disoproxil fumarate (TDF) continuously over 28 d. With four monthly ring changes in this repeated challenge model, TDF IVRs generated reproducible and protective drug levels. All TDF IVR-treated macaques (n = 6) remained seronegative and simian-HIV RNA negative after 16 weekly vaginal exposures to 50 tissue culture infectious dose SHIV162p3. In contrast, 11/12 control macaques became infected, with a median of four exposures assuming an eclipse of 7 d from infection to virus RNA detection. Protection was associated with tenofovir levels in vaginal fluid [mean 1.8 × 105 ng/mL (range 1.1 × 104 to 6.6 × 105 ng/mL)] and ex vivo antiviral activity of cervicovaginal lavage samples. These observations support further advancement of TDF IVRs as well as the concept that extended duration drug delivery devices delivering topical antiretrovirals could be effective tools in preventing the sexual transmission of HIV in humans.


Antimicrobial Agents and Chemotherapy | 2014

Pharmacokinetics and Preliminary Safety Study of Pod-Intravaginal Rings Delivering Antiretroviral Combinations for HIV Prophylaxis in a Macaque Model

John A. Moss; Priya Srinivasan; Thomas J. Smith; Irina Butkyavichene; Gilbert Lopez; Amanda A. Brooks; Amy Martin; Chuong Dinh; James M. Smith; Marc M. Baum

ABSTRACT Preexposure prophylaxis using oral regimens involving the HIV nucleoside reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) demonstrated efficacy in three clinical trials. Adherence was determined to be a key parameter for success. Incorporation of the TDF-FTC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with those of oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described; this constitutes the first report of an IVR delivering TDF and FTC, as well as a triple-combination IVR delivering TDF, FTC, and the entry inhibitor maraviroc (MVC). The pharmacokinetics and preliminary local safety of the two combination pod-IVRs were evaluated in the pig-tailed macaque model. The devices exhibited sustained release at controlled rates over the 28-day study period. Median steady-state drug levels in vaginal tissues in the TDF-FTC group were 30 μg g−1 (tenofovir [TFV], in vivo hydrolysis product of TDF) and 500 μg g−1 (FTC) and in the TDF-FTC-MVC group were 10 μg g−1 (TFV), 150 μg g−1 (FTC), and 20 μg g−1 (MVC). No adverse events were observed, and there were no toxicological findings. Mild-to-moderate increases in inflammatory infiltrates were observed in the vaginal tissues of some animals in both the presence and the absence of the IVRs. The IVRs did not disturb the vaginal microbiota, and levels of proinflammatory cytokines remained stable throughout the study. Pod-IVR candidates based on the TDF-FTC combination have potential for the prevention of vaginal HIV acquisition and merit clinical investigation.


Journal of Acquired Immune Deficiency Syndromes | 2015

Tenofovir Disoproxil Fumarate Intravaginal Ring Protects High-Dose Depot Medroxyprogesterone Acetate-Treated Macaques From Multiple SHIV Exposures

James M. Smith; Priya Srinivasan; Ryan S. Teller; Yungtai Lo; Chuong Dinh; Patrick F. Kiser; Betsy C. Herold

Abstract:Preclinical HIV prevention models use either a single high-dose viral challenge in depot medroxyprogesterone acetate–treated macaques or repeated viral challenges in cycling macaques. We tested the efficacy of an intravaginal tenofovir disoproxil fumarate (TDF) ring in a model combining repeated 30-mg injections of depot medroxyprogesterone acetate every 6 weeks with vaginal viral challenges weekly for 12 weeks. Twelve macaques were randomized to TDF or placebo rings. All placebo macaques became infected after a median of 2 exposures, whereas only 1 TDF macaque became infected at the eighth exposure (P = 0.0012). The TDF ring provides durable protection in a stringent challenge model.


PLOS ONE | 2016

Topical Delivery of Tenofovir Disoproxil Fumarate and Emtricitabine from Pod-Intravaginal Rings Protects Macaques from Multiple SHIV Exposures

Priya Srinivasan; John A. Moss; Manjula Gunawardana; Scott A. Churchman; Flora Yang; Chuong Dinh; James Mitchell; Jining Zhang; Rob Fanter; Christine S. Miller; Irina Butkyavichene; Janet M. McNicholl; Thomas J. Smith; Marc M. Baum; James M. Smith

Topical preexposure prophylaxis (PrEP) against HIV has been marginally successful in recent clinical trials with low adherence rates being a primary factor for failure. Controlled, sustained release of antiretroviral (ARV) drugs may help overcome these low adherence rates if the product is protective for extended periods of time. The oral combination of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) is currently the only FDA-approved ARV drug for HIV PrEP. A novel pod-intravaginal ring (IVR) delivering TDF and FTC at independently controlled rates was evaluated for efficacy at preventing SHIV162p3 infection in a rigorous, repeat low-dose vaginal exposure model using normally cycling female pigtailed macaques. Six macaques received pod-IVRs containing TDF (65 mg) and FTC (68 mg) every two weeks, and weekly vaginal exposures to 50 TCID50 of SHIV162p3 began one week after the first pod-IVR insertion. All pod-IVR-treated macaques were fully protected throughout the study (P = 0.0002, Log-rank test), whereas all control animals became infected with a median of 4 exposures to infection. The topical, sustained release of TDF and FTC from the pod-IVR maintained protective drug levels in macaques over four months of virus exposures. This novel and versatile delivery system has the capacity to deliver and maintain protective levels of multiple drugs and the protection observed here warrants clinical evaluation of this pod-IVR design.


Journal of Medical Primatology | 2014

Pharmacokinetic evaluation of tenofovir disoproxil fumarate released from an intravaginal ring in pigtailed macaques after 6 months of continuous use.

Priya Srinivasan; Chuong Dinh; Jining Zhang; Chou Pong Pau; Janet M. McNicholl; Yungtai Lo; Betsy C. Herold; Ryan S. Teller; Patrick F. Kiser; James M. Smith

A reservoir intravaginal ring (IVR) eluting tenofovir disoproxil fumarate (TDF) was evaluated for 6 months of continuous use in normally cycling female pigtailed macaques with monthly IVR exchanges to define pharmacokinetics and safety.


The Journal of Infectious Diseases | 2016

Combination Emtricitabine and Tenofovir Disoproxil Fumarate Prevents Vaginal Simian/Human Immunodeficiency Virus Infection in Macaques Harboring Chlamydia trachomatis and Trichomonas vaginalis

Jessica Radzio; Tara Henning; Leecresia Jenkins; Shanon Ellis; Carol E. Farshy; Christi Phillips; Angela Holder; Susan Kuklenyik; Chuong Dinh; Debra L. Hanson; Janet M. McNicholl; Walid Heneine; John R. Papp; Ellen N. Kersh; J. Gerardo García-Lerma

Genital inflammation associated with sexually transmitted infections increases susceptibility to human immunodeficiency virus (HIV), but it is unclear whether the increased risk can reduce the efficacy of pre-exposure prophylaxis (PrEP). We investigated whether coinfection of macaques with Chlamydia trachomatis and Trichomonas vaginalis decreases the prophylactic efficacy of oral emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). Macaques were exposed to simian/human immunodeficiency virus (SHIV) vaginally each week for up to 16 weeks and received placebo or FTC/TDF pericoitally. All animals in the placebo group were infected with SHIV, while 4 of 6 PrEP recipients remained uninfected (P= .03). Oral FTC/TDF maintains efficacy in a macaque model of sexually transmitted coinfection, although the infection of 2 macaques signals a modest loss of PrEP activity.


AIDS | 2017

Topical tenofovir protects against vaginal simian HIV infection in macaques coinfected with Chlamydia trachomatis and Trichomonas vaginalis

Natalia Makarova; Tara Henning; Andrew Taylor; Chuong Dinh; Jonathan Lipscomb; Rachael D. Aubert; Debra L. Hanson; Christi Phillips; John R. Papp; James R. Mitchell; Janet M. McNicholl; Gerardo J. Garcia-Lerma; Walid Heneine; Ellen N. Kersh; Charles Dobard

Background: Chlamydia trachomatis and Trichomonas vaginalis, two prevalent sexually transmitted infections, are known to increase HIV risk in women and could potentially diminish preexposure prophylaxis efficacy, particularly for topical interventions that rely on local protection. We investigated in macaques whether coinfection with Chlamydia trachomatis/Trichomonas vaginalis reduces protection by vaginal tenofovir (TFV) gel. Methods: Vaginal TFV gel dosing previously shown to provide 100 or 74% protection when applied either 30 min or 3 days before simian HIV(SHIV) challenge was assessed in pigtailed macaques coinfected with Chlamydia trachomatis/Trichomonas vaginalis and challenged twice weekly with SHIV162p3 for up to 10 weeks (two menstrual cycles). Three groups of six macaques received either placebo or 1% TFV gel 30 min or 3 days before each SHIV challenge. We additionally assessed TFV and TFV diphosphate concentrations in plasma and vaginal tissues in Chlamydia trachomatis/Trichomonas vaginalis coinfected (n = 4) and uninfected (n = 4) macaques. Results: Chlamydia trachomatis/Trichomonas vaginalis coinfections were maintained during the SHIV challenge period. All macaques that received placebo gel were SHIV infected after a median of seven challenges (one menstrual cycle). In contrast, no infections were observed in macaques treated with TFV gel 30 min before SHIV challenge (P < 0.001). Efficacy was reduced to 60% when TFV gel was applied 3 days before SHIV challenge (P = 0.07). Plasma TFV and TFV diphosphate concentrations in tissues and vaginal lymphocytes were significantly higher in Chlamydia trachomatis/Trichomonas vaginalis coinfected compared with Chlamydia trachomatis/Trichomonas vaginalis uninfected macaques. Conclusion: Our findings in this model suggest that Chlamydia trachomatis/Trichomonas vaginalis coinfection may have little or no impact on the efficacy of highly effective topical TFV modalities and highlight a significant modulation of TFV pharmacokinetics.


Journal of Medical Primatology | 2013

Evaluation of the lymphocyte trafficking drug FTY720 in vaginal tissues

Ai Tsuiki; Wei Luo; Tara Henning; Sundaram A. Vishwanathan; Chuong Dinh; Debra R. Adams; Elizabeth Sweeney; James Mitchell; Shannon Bachman; Prachi Sharma; Nathaniel Powell; R. Michael Hendry; Janet M. McNicholl; Ellen N. Kersh

FTY720 is an immunomodulatory agent that reduces lymphocytes in peripheral tissues and circulation. Such agents may be effective as vaginal microbicides for HIV prevention. Systemic or vaginal application of FTY720 may reduce lymphocyte concentrations in genital tissues, reducing HIV target cell numbers.


Journal of Medical Primatology | 2017

Repeated administration of high-dose depot medroxyprogesterone acetate does not alter SHIVSF162p3 viral kinetics and tenofovir pharmacokinetics when delivered via intravaginal rings

Priya Srinivasan; Jining Zhang; Chuong Dinh; Ryan S. Teller; Janet M. McNicholl; Patrick F. Kiser; Betsy C. Herold; James M. Smith

Intravaginal rings (IVR) for HIV prevention will likely be used by women on depot medroxyprogesterone acetate (DMPA) hormonal contraception. We used pigtailed macaques to evaluate the effects of DMPA on tenofovir disoproxil fumarate (TDF) IVR pharmacokinetics and viral shedding.


The Journal of Infectious Diseases | 2018

Efficacy of Vaginally Administered Gel Containing Emtricitabine and Tenofovir Against Repeated Rectal Simian Human Immunodeficiency Virus Exposures in Macaques

Charles Dobard; Natalia Makarova; Rolieria West-Deadwyler; Andrew Taylor; Chuong Dinh; Amy Martin; Jonathan Lipscomb; James Mitchell; George Khalil; Gerardo J. Garcia-Lerma; Walid Heneine

Vaginal microbicides containing antiretrovirals (ARVs) have shown to prevent vaginally acquired human immunodeficiency virus (HIV), but these products may not protect women who engage in anal sex. Intravaginal dosing with ARVs has shown to result in drug exposures in rectal tissues, thus raising the possibility of dual compartment protection. To test this concept, we investigated whether intravaginal dosing with emtricitabine (FTC)/tenofovir (TFV) gel, which fully protected macaques against repeated vaginal exposures to simian human immunodeficiency virus (SHIV), protects against rectal SHIV exposures. Pharmacokinetic studies revealed rapid distribution of FTC and TFV to rectal tissues and luminal fluids, albeit at concentrations 1-2 log10 lower than those in the vaginal compartment. Efficacy measurements against repeated rectal SHIV challenges demonstrated a 4.5-fold reduction in risk of infection in macaques that received intravaginal FTC/TFV compared to placebo gel (P = .047; log-rank test). These data support the concept of dual compartment protection by vaginal dosing and warrants developing ARV-based vaginal products with improved bidirectional dosing.

Collaboration


Dive into the Chuong Dinh's collaboration.

Top Co-Authors

Avatar

Janet M. McNicholl

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James M. Smith

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Amy Martin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Priya Srinivasan

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Walid Heneine

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Betsy C. Herold

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James Mitchell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen N. Kersh

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge