Ciro Tetta
Fresenius Medical Care
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ciro Tetta.
Journal of The American Society of Nephrology | 2009
Stefania Bruno; Cristina Grange; Maria Chiara Deregibus; Raffaele A. Calogero; Silvia Saviozzi; Federica Collino; Laura Morando; Alessandro Busca; Michele Falda; Benedetta Bussolati; Ciro Tetta; Giovanni Camussi
Administration of mesenchymal stem cells (MSCs) improves the recovery from acute kidney injury (AKI). The mechanism may involve paracrine factors promoting proliferation of surviving intrinsic epithelial cells, but these factors remain unknown. In the current study, we found that microvesicles derived from human bone marrow MSCs stimulated proliferation in vitro and conferred resistance of tubular epithelial cells to apoptosis. The biologic action of microvesicles required their CD44- and beta1-integrin-dependent incorporation into tubular cells. In vivo, microvesicles accelerated the morphologic and functional recovery of glycerol-induced AKI in SCID mice by inducing proliferation of tubular cells. The effect of microvesicles on the recovery of AKI was similar to the effect of human MSCs. RNase abolished the aforementioned effects of microvesicles in vitro and in vivo, suggesting RNA-dependent biologic effects. Microarray analysis and quantitative real time PCR of microvesicle-RNA extracts indicate that microvesicles shuttle a specific subset of cellular mRNA, such as mRNAs associated with the mesenchymal phenotype and with control of transcription, proliferation, and immunoregulation. These results suggest that microvesicles derived from MSCs may activate a proliferative program in surviving tubular cells after injury via a horizontal transfer of mRNA.
Cancer Research | 2011
Cristina Grange; Marta Tapparo; Federica Collino; Loriana Vitillo; Christian Damasco; Maria Chiara Deregibus; Ciro Tetta; Benedetta Bussolati; Giovanni Camussi
Recent studies suggest that tumor-derived microvesicles (MV) act as a vehicle for exchange of genetic information between tumor and stromal cells, engendering a favorable microenvironment for cancer development. Within the tumor mass, all cell types may contribute to MV shedding, but specific contributions to tumor progression have yet to be established. Here we report that a subset of tumor-initiating cells expressing the mesenchymal stem cell marker CD105 in human renal cell carcinoma releases MVs that trigger angiogenesis and promote the formation of a premetastatic niche. MVs derived only from CD105-positive cancer stem cells conferred an activated angiogenic phenotype to normal human endothelial cells, stimulating their growth and vessel formation after in vivo implantation in immunocompromised severe combined immunodeficient (SCID) mice. Furthermore, treating SCID mice with MVs shed from CD105-positive cells greatly enhanced lung metastases induced by i.v. injection of renal carcinoma cells. Molecular characterization of CD105-positive MVs defines a set of proangiogenic mRNAs and microRNAs implicated in tumor progression and metastases. Our results define a specific source of cancer stem cell-derived MVs that contribute to triggering the angiogenic switch and coordinating metastatic diffusion during tumor progression.
PLOS ONE | 2010
Federica Collino; Maria Chiara Deregibus; Stefania Bruno; Luca Sterpone; Giulia Aghemo; Laura Viltono; Ciro Tetta; Giovanni Camussi
Background Cell-derived microvesicles (MVs) have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs) and liver resident stem cells (HLSCs) were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs). Methodology/Principal Findings MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. Conclusions This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem cells may, at least in part, depend on MV-shuttled miRNAs. Data generated from this study, stimulate further functional investigations on the predicted target genes and pathways involved in the biological effect of human adult stem cells.
Nephrology Dialysis Transplantation | 2011
Stefano Gatti; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Vincenzo Cantaluppi; Ciro Tetta; Giovanni Camussi
BACKGROUND Several studies demonstrated that mesenchymal stem cells (MSCs) reverse acute kidney injury (AKI) by a paracrine mechanism rather than by MSC transdifferentiation. We recently demonstrated that microvesicles (MVs) released from MSCs may account for this paracrine mechanism by a horizontal transfer of messenger RNA and microRNA. METHODS MVs isolated from MSCs were injected intravenously in rats (30 μg/rat) immediately after monolateral nephrectomy and renal artery and vein occlusion for 45 min. To evaluate the MV effects on AKI induced by ischaemia-reperfusion injury (IRI), the animals were divided into different groups: normal rats (n = 4), sham-operated rats (n = 6), IRI rats (n = 6), IRI + MV rats (n = 6), and IRI + RNase-MV rats (n = 6), and all animals were sacrificed at Day 2 after the operation. To evaluate the chronic kidney damage consequent to IRI, the rats were divided into different groups: sham-operated rats (n = 6) and IRI rats (n = 6), IRI + MV rats (n = 6), and all animal were sacrificed 6 months after the operation. RESULTS We found that a single administration of MVs, immediately after IRI, protects rats from AKI by inhibiting apoptosis and stimulating tubular epithelial cell proliferation. The MVs also significantly reduced the impairment of renal function. Pretreatment of MVs with RNase to inactivate their RNA cargo abrogated these protective effects. Moreover, MVs by reducing the acute injury also protected from later chronic kidney disease. CONCLUSION MVs released from MSCs protect from AKI induced by ischaemia reperfusion injury and from subsequent chronic renal damage. This suggest that MVs could be exploited as a potential new therapeutic approach.
Stem Cells | 2006
Maria Beatriz Herrera; Stefania Bruno; Stefano Buttiglieri; Ciro Tetta; Stefano Gatti; Maria Chiara Deregibus; Benedetta Bussolati; Giovanni Camussi
Several studies suggested the presence of stem cells in the adult normal human liver; however, a population with stem cell properties has not yet been isolated. The purpose of the present study was to identify and characterize progenitor cells in normal adult human liver. By stringent conditions of liver cell cultures, we isolated and characterized a population of human liver stem cells (HLSCs). HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, and CD90 but not the hematopoietic stem cell markers CD34, CD45, CD117, and CD133. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin‐19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed albumin, α‐fetoprotein, and in a small percentage of cells, cytokeratin‐8 and cytokeratin‐18, indicating a partial commitment to hepatic cells. HLSCs differentiated in mature hepatocytes when cultured in the presence of hepatocyte growth factor and fibroblast growth factor 4, as indicated by the expression of functional cytochrome P450, albumin, and urea production. Under this condition, HLSCs downregulated α‐fetoprotein and expressed cytokeratin‐8 and cytokeratin‐18. HLSCs were also able to undergo osteogenic and endothelial differentiation when cultured in the appropriated differentiation media, but they did not undergo lipogenic differentiation. Moreover, HLSCs differentiated in insulin‐producing islet‐like structures. In vivo, HLSCs contributed to regeneration of the liver parenchyma in severe‐combined immunodeficient mice. In conclusion, we here identified a pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies.
PLOS ONE | 2012
Stefania Bruno; Cristina Grange; Federica Collino; Maria Chiara Deregibus; Vincenzo Cantaluppi; Luigi Biancone; Ciro Tetta; Giovanni Camussi
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.
Kidney International | 2012
Vincenzo Cantaluppi; Stefano Gatti; Davide Medica; Federico Figliolini; Stefania Bruno; Maria Chiara Deregibus; Andrea Sordi; Luigi Biancone; Ciro Tetta; Giovanni Camussi
Endothelial progenitor cells are known to reverse acute kidney injury by paracrine mechanisms. We previously found that microvesicles released from these progenitor cells activate an angiogenic program in endothelial cells by horizontal mRNA transfer. Here, we tested whether these microvesicles prevent acute kidney injury in a rat model of ischemia-reperfusion injury. The RNA content of microvesicles was enriched in microRNAs (miRNAs) that modulate proliferation, angiogenesis, and apoptosis. After intravenous injection following ischemia-reperfusion, the microvesicles were localized within peritubular capillaries and tubular cells. This conferred functional and morphologic protection from acute kidney injury by enhanced tubular cell proliferation, reduced apoptosis, and leukocyte infiltration. Microvesicles also protected against progression of chronic kidney damage by inhibiting capillary rarefaction, glomerulosclerosis, and tubulointerstitial fibrosis. The renoprotective effect of microvesicles was lost after treatment with RNase, nonspecific miRNA depletion of microvesicles by Dicer knock-down in the progenitor cells, or depletion of pro-angiogenic miR-126 and miR-296 by transfection with specific miR-antagomirs. Thus, microvesicles derived from endothelial progenitor cells protect the kidney from ischemic acute injury by delivering their RNA content, the miRNA cargo of which contributes to reprogramming hypoxic resident renal cells to a regenerative program.
Critical Care Medicine | 2002
Claudio Ronco; Alessandra Brendolan; Gerhard Lonnemann; Rinaldo Bellomo; Pasquale Piccinni; Antonio Digito; Maurizio Dan; Marco Irone; Giuseppe La Greca; Paola Inguaggiato; Umberto Maggiore; Concetta De Nitti; Mary Lou Wratten; Zaccaria Ricci; Ciro Tetta
ObjectiveTo test the hypothesis that nonselective plasma adsorption by a hydrophobic resin (coupled plasmafiltration and adsorption) could improve hemodynamics and restore leukocyte responsiveness in patients with septic shock. DesignProspective, pilot, crossover clinical trial. SettingGeneral intensive care unit in a teaching hospital. SubjectsTen patients with hyperdynamic septic shock. InterventionsPatients were randomly allocated to 10 hrs of either coupled plasma filtration adsorption plus hemodialysis (treatment A) or continuous venovenous hemodiafiltration (treatment B) in random order. We measured the change in mean arterial pressure, norepinephrine requirements, and leukocyte tumor necrosis factor-&agr; (TNF-&agr;) production (both spontaneous and lipopolysaccharide-stimulated) after 10 hrs of each treatment. We also tested TNF-&agr; production from normal human adherent monocytes incubated with patients’ plasma obtained before and after the resin, both with or without incubation with an anti-interleukin-10 monoclonal antibody. ResultsMean arterial pressure increased after 10 hr by 11.8 mm Hg with treatment A and by 5.5 mm Hg with treatment B (p = .001). There was an average decrease of norepinephrine requirement of 0.08 &mgr;g/kg/min with treatment A and 0.0049 &mgr;g/kg/min with treatment B (p = .003). All patients but one survived. Spontaneous and lipopolysaccharide-induced TNF-&agr; production from patients’ whole blood increased over time with treatment A. This increase was more marked in blood drawn after the device (plasmafiltrate-sorbent plus hemodialyzer) (p = .009). Preresin plasma suppressed lipopolysaccharide-stimulated production of TNF-&agr; by 1 × 106 cultured adherent monocytes from healthy donors. This suppressive effect was significantly reduced after passage of plasma through the resin (p = .019) and after incubation with anti-interleukin-10 monoclonal antibodies (p = .028). ConclusionsIn patients with septic shock, coupled plasmafiltration-adsorption combined with hemodialysis was associated with improved hemodynamics compared with continuous venovenous hemodiafiltration. This result might be related to its ability to restore leukocyte responsiveness to lipopolysaccharide. These findings suggest a potential role for blood purification in the treatment of septic shock.
Nephrology Dialysis Transplantation | 2012
Luigi Biancone; Stefania Bruno; Maria Chiara Deregibus; Ciro Tetta; Giovanni Camussi
Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
Nephrology Dialysis Transplantation | 2008
Peter Wabel; Ulrich Moissl; Paul Chamney; Tomas Jirka; Petr Machek; Pedro Ponce; Petr Taborsky; Ciro Tetta; Nestor Velasco; Jiri Vlasak; Wojciech Zaluska; Volker Wizemann
BACKGROUND Hypertension and fluid overload (FO) are well-recognized problems in the chronic kidney disease (CKD) population. While the prevalence of hypertension is well documented, little is known about the severity of FO in this population. METHODS A new bioimpedance spectroscopy device (BCM-Body Composition Monitor) was selected that allows quantitative determination of the deviation in hydration status from normal ranges (DeltaHS). Pre-dialysis systolic blood pressure (BPsys) and DeltaHS was analysed in 500 haemodialysis patients from eight dialysis centres. A graphical tool (HRP-hydration reference plot) was devised allowing DeltaHS to be combined with measurements of BPsys enabling comparison with a matched healthy population (n = 1244). RESULTS Nineteen percent of patients (n = 95) were found to have normal BPsys and DeltaHS in the normal range. Approximately one-third of patients (n = 133) exhibited reasonable control of BPsys and fluids (BPsys <150 mmHg and DeltaHS <2.5 L). In only 15% of patients (n = 74) was hypertension observed (BPsys >150 mmHg) with a concomitant DeltaHS >2.5 L (possible volume-dependent hypertension). In contrast, 13% of patients (n = 69) were hypertensive with DeltaHS <1.1 L (possible essential hypertension). In 10% of patients (n = 52), BPsys <140 mmHg was recorded despite DeltaHS exceeding 2.5 L. CONCLUSION Our study illustrated the wide variability in BPsys regardless of the degree of DeltaHS. The HRP provides an invaluable tool for classifying patients in terms of BPsys and DeltaHS and the proximity of these parameters to reference ranges. This represents an important step towards more objective choice of strategies for the optimal treatment of hypertension and FO. Further studies are required to assess the prognostic and therapeutic role of the HRP.