Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Russell is active.

Publication


Featured researches published by Claire Russell.


Neuron | 1998

Dosage-Sensitive and Complementary Functions of Roundabout and Commissureless Control Axon Crossing of the CNS Midline

Thomas Kidd; Claire Russell; Corey S. Goodman; Guy Tear

commissureless and roundabout lead to complementary mutant phenotypes in which either too few or too many axons cross the midline. The robo;comm double-mutant phenotype is identical to robo alone, suggesting that in the absence of robo, comm is no longer required. Comm is expressed on midline cells; Robo is expressed in a dynamic fashion on growth cones and appears to function as an axon guidance receptor. robo function is dosage-sensitive. Overexpression of comm is also dosage-sensitive and leads to a phenotype identical to robo loss-of-function. Comm controls Robo expression; increasing Comm leads to a reduction of Robo protein. The levels of Comm and Robo appear to be tightly regulated to assure that only certain growth cones cross the midline and that those growth cones that do cross never do so again.


Neuron | 2000

A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain.

Miguel L. Concha; Rebecca D. Burdine; Claire Russell; Alexander F. Schier; Stephen W. Wilson

Animals show behavioral asymmetries that are mediated by differences between the left and right sides of the brain. We report that the laterality of asymmetric development of the diencephalic habenular nuclei and the photoreceptive pineal complex is regulated by the Nodal signaling pathway and by midline tissue. Analysis of zebrafish embryos with compromised Nodal signaling reveals an early role for this pathway in the repression of asymmetrically expressed genes in the diencephalon. Later signaling mediated by the EGF-CFC protein One-eyed pinhead and the forkhead transcription factor Schmalspur is required to overcome this repression. When expression of Nodal pathway genes is either absent or symmetrical, neuroanatomical asymmetries are still established but are randomized. This indicates that Nodal signaling is not required for asymmetric development per se but is essential to determine the laterality of the asymmetry.


Neuron | 2003

Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality

Miguel L. Concha; Claire Russell; Jennifer C. Regan; Marcel Tawk; Samuel Sidi; Darren Gilmour; Marika Kapsimali; Lauro Sumoy; Kim Goldstone; Enrique Amaya; David Kimelman; Teresa Nicolson; Stefan Gründer; Miranda Gomperts; Jonathan D. W. Clarke; Stephen W. Wilson

The mechanisms that establish behavioral, cognitive, and neuroanatomical asymmetries are poorly understood. In this study, we analyze the events that regulate development of asymmetric nuclei in the dorsal forebrain. The unilateral parapineal organ has a bilateral origin, and some parapineal precursors migrate across the midline to form this left-sided nucleus. The parapineal subsequently innervates the left habenula, which derives from ventral epithalamic cells adjacent to the parapineal precursors. Ablation of cells in the left ventral epithalamus can reverse laterality in wild-type embryos and impose the direction of CNS asymmetry in embryos in which laterality is usually randomized. Unilateral modulation of Nodal activity by Lefty1 can also impose the direction of CNS laterality in embryos with bilateral expression of Nodal pathway genes. From these data, we propose that laterality is determined by a competitive interaction between the left and right epithalamus and that Nodal signaling biases the outcome of this competition.


Neural Development | 2008

Brain asymmetry is encoded at the level of axon terminal morphology

Isaac H. Bianco; Matthias Carl; Claire Russell; Jonathan D. W. Clarke; Stephen W. Wilson

BackgroundFunctional lateralization is a conserved feature of the central nervous system (CNS). However, underlying left-right asymmetries within neural circuitry and the mechanisms by which they develop are poorly described.ResultsIn this study, we use focal electroporation to examine the morphology and connectivity of individual neurons of the lateralized habenular nuclei. Habenular projection neurons on both sides of the brain share a stereotypical unipolar morphology and elaborate remarkable spiraling terminal arbors in their target interpeduncular nucleus, a morphology unlike that of any other class of neuron described to date. There are two quite distinct sub-types of axon arbor that differ both in branching morphology and in their localization within the target nucleus. Critically, both arbor morphologies are elaborated by both left and right-sided neurons, but at greatly differing frequencies. We show that these differences in cell type composition account for the gross connectional asymmetry displayed by the left and right habenulae. Analysis of the morphology and projections of individual post-synaptic neurons suggests that the target nucleus has the capacity to either integrate left and right inputs or to handle them independently, potentially relaying information from the left and right habenulae within distinct downstream pathways, thus preserving left-right coding. Furthermore, we find that signaling from the unilateral, left-sided parapineal nucleus is necessary for both left and right axons to develop arbors with appropriate morphology and targeting. However, following parapineal ablation, left and right habenular neurons continue to elaborate arbors with distinct, lateralized morphologies.ConclusionBy taking the analysis of asymmetric neural circuitry to the level of single cells, we have resolved left-right differences in circuit microarchitecture and show that lateralization can be recognized at the level of the morphology and connectivity of single projection neuron axons. Crucially, the same circuitry components are specified on both sides of the brain, but differences in the ratios of different neuronal sub-types results in a lateralized neural architecture and gross connectional asymmetry. Although signaling from the parapineal is essential for the development of normal lateralization, additional factors clearly act during development to confer left-right identity upon neurons in this highly conserved circuit.


Neuron | 2009

An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry

Jennifer C. Regan; Miguel L. Concha; Myriam Roussigné; Claire Russell; Stephen W. Wilson

Neuroanatomical and functional asymmetries are universal features of the vertebrate CNS, but how asymmetry is generated is unknown. Here we show that zebrafish fgf8 mutants do not elaborate forebrain asymmetries, demonstrated by the failure of the parapineal nucleus to migrate from its initial midline position to the left side of the brain. Local provision of Fgf8 restores the asymmetric migration of parapineal cells, usually to the left, irrespective of the location of the Fgf8 source. This laterality bias is due to left-sided Nodal signaling and when the bias in Nodal signaling is removed, parapineal cells migrate toward the source of Fgf8 protein. This study presents a mechanism for breaking neuroanatomical symmetry through Fgf8-dependent regulation of bistable left- or right-sided migration of the parapineal. The combined action of Fgf and Nodal signals ensures the establishment of neuroanatomical asymmetries with consistent laterality.


Development | 2005

Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones

William Norton; M Mangoli; Zsolt Lele; H M Pogoda; B Diamond; S Mercurio; Claire Russell; Hiroki Teraoka; H L Stickney; Gerd-Jörg Rauch; Carl-Philipp Heisenberg; Corinne Houart; Thomas F. Schilling; H G Frohnhoefer; S Rastegar; Carl J. Neumann; R M Gardiner; Uwe Strähle; Robert Geisler; M Rees; William S. Talbot; Stephen W. Wilson

In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphé nucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.


Biochimica et Biophysica Acta | 2013

Use of model organisms for the study of neuronal ceroid lipofuscinosis

Michael Bond; Sophia-Martha kleine Holthaus; Imke Tammen; Guy Tear; Claire Russell

Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Disease Models & Mechanisms | 2013

Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome

Fahad Mahmood; Monika Mozere; Anselm A. Zdebik; Horia Stanescu; Jonathan Tobin; Philip L. Beales; Robert Kleta; Detlef Bockenhauer; Claire Russell

SUMMARY Recessive mutations in KCNJ10, which encodes an inwardly rectifying potassium channel, were recently identified as the cause of EAST syndrome, a severe and disabling multi-organ disorder consisting of epilepsy, ataxia, sensorineural deafness and tubulopathy that becomes clinically apparent with seizures in infancy. A Kcnj10 knockout mouse shows postnatal mortality and is therefore not suitable for drug discovery. Because zebrafish are ideal for in vivo screening for potential therapeutics, we tested whether kcnj10 knockdown in zebrafish would fill this need. We cloned zebrafish kcnj10 and demonstrated that its function is equivalent to that of human KCNJ10. We next injected splice- and translation-blocking kcnj10 antisense morpholino oligonucleotides and reproduced the cardinal symptoms of EAST syndrome – ataxia, epilepsy and renal tubular defects. Several of these phenotypes could be assayed in an automated manner. We could rescue the morphant phenotype with complementary RNA (cRNA) encoding human wild-type KCNJ10, but not with cRNA encoding a KCNJ10 mutation identified in individuals with EAST syndrome. Our results suggest that zebrafish will be a valuable tool to screen for compounds that are potentially therapeutic for EAST syndrome or its individual symptoms. Knockdown of kcnj10 represents the first zebrafish model of a salt-losing tubulopathy, which has relevance for blood pressure control.


Brain | 2013

A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation

Fahad Mahmood; Sonia Fu; Jennifer Cooke; Stephen W. Wilson; Jonathan D. Cooper; Claire Russell

Tripeptidyl peptidase 1 (TPP1) deficiency causes CLN2 disease, late infantile (or classic late infantile neuronal ceroid lipofuscinosis), a paediatric neurodegenerative disease of autosomal recessive inheritance. Patients suffer from blindness, ataxia, epilepsy and cognitive defects, with MRI indicating widespread brain atrophy, and profound neuron loss is evident within the retina and brain. Currently there are no effective therapies for this disease, which causes premature death in adolescence. Zebrafish have been successfully used to model a range of neurological and behavioural abnormalities. The aim of this study was to characterize the pathological and functional consequences of Tpp1 deficiency in zebrafish and to correlate these with human CLN2 disease, thereby providing a platform for drug discovery. Our data show that homozygous tpp1(sa0011) mutant (tpp1(sa0011)(-/-)) zebrafish display a severe, progressive, early onset neurodegenerative phenotype, characterized by a significantly small retina, a small head and curved body. The mutant zebrafish have significantly reduced median survival with death occurring 5 days post-fertilization. As in human patients with CLN2 disease, mutant zebrafish display storage of subunit c of mitochondrial ATP-synthase, hypertrophic lysosomes as well as localized apoptotic cell death in the retina, optic tectum and cerebellum. Further neuropathological phenotypes of these mutants provide novel insights into mechanisms of pathogenesis in CLN2 disease. Secondary neurogenesis in the retina, optic tectum and cerebellum is impaired and axon tracts within the spinal cord, optic nerve and the posterior commissure are disorganized, with the optic nerve failing to reach its target. This severe neurodegenerative phenotype eventually results in functional motor impairment, but this is preceded by a phase of hyperactivity that is consistent with seizures. Importantly, both of these locomotion phenotypes can be assayed in an automated manner suitable for high-throughput studies. Our study provides proof-of-principle that tpp1(sa0011)(-/-) mutants can utilize the advantages of zebrafish for understanding pathogenesis and drug discovery in CLN2 disease and other epilepsies.


Vision Research | 2003

The roles of Hedgehogs and Fibroblast Growth Factors in eye development and retinal cell rescue.

Claire Russell

Knowledge of normal eye development is crucial for the development of retinal rescue strategies. I shall focus on two signalling pathways that affect retinal development. Fibroblast growth factors function in retinal cell proliferation, retinal ganglion cell axon guidance and target recognition, craniofacial patterning and lens induction. Hedgehog proteins are required for progression of the neurogenic wave, cell proliferation, photoreceptor differentiation, retinal ganglion cell axon growth and craniofacial patterning. These signalling pathways have pleiotropic effects, can interact and have the potential to be used therapeutically. The zebrafish model organism may be well suited to studying how signalling pathways interact.

Collaboration


Dive into the Claire Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fahad Mahmood

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan D. Cooper

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Kleta

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge