Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia C. Carabajal is active.

Publication


Featured researches published by Claudia C. Carabajal.


Geophysical Research Letters | 2005

Estimates of forest canopy height and aboveground biomass using ICESat

Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando D. B. Espirito-Santo; M. O. Hunter; Raimundo de Oliveira

Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of ICESat data to estimate forest height is complicated by the pulse broadening associated with large-footprint, waveform-sampling lidar. We combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broadleaf forests in Tennessee, and temperate needleleaf forests in Oregon. Final models for each site explained between 59% and 68% of variance in field-measured forest canopy height (RMSE between 4.85 and 12.66 m). In addition, ICESat-derived heights for the Brazilian plots were correlated with field-estimates of aboveground biomass (r(2) = 73%, RMSE = 58.3 Mgha(-1)).


Nature | 2014

Amazon forests maintain consistent canopy structure and greenness during the dry season

Douglas C. Morton; Jyoteshwar R. Nagol; Claudia C. Carabajal; Jacqueline Rosette; Michael Palace; Bruce D. Cook; Eric F. Vermote; David J. Harding; Peter R. J. North

The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.


Photogrammetric Engineering and Remote Sensing | 2006

SRTM C-Band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief

Claudia C. Carabajal; David J. Harding

The Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation Satellite (ICESat) provides a globally distributed elevation data set that is well-suited to independently evaluate the accuracy of digital elevation models (DEMs), such as those produced by the Shuttle Radar Topography Mission (SRTM). We document elevation differences between SRTM C-band 1 and 3 arcsecond resolution DEMs and ICESat 1064 nm altimeter channel elevation data acquired in an areas of variable topography and vegetation cover in the South American Amazon Basin, Asian Tibetan Plateau ‐ Himalayan Mountains, East Africa, western Australia, and the western United States. GLAS received waveforms enable the estimation of SRTM radar phase center elevation biases and variability with respect to the highest (canopy top where vegetated), centroid (distanceweighted average), and lowest (ground) elevations detected within ICESat laser footprints. Distributions of ICESat minus SRTM elevation differences are quantified as a function of waveform extent (a measure of within-footprint relief), SRTM roughness (standard deviation of a 3 � 3 array of elevation posts), and percent tree cover as reported in the Vegetation Continuous Field product derived from Moderate Resolution Imaging Spectrometer (MODIS) data. SRTM roughness is linearly correlated with waveform extent for areas where percent tree cover is low. The SRTM phase center elevation is usually located between the ICESat highest and lowest elevations, and on average is closely correlated with the ICESat centroid. In areas of low relief and sparse tree cover, the mean of ICESat centroid minus SRTM phase center elevation differences for the five regions examined vary between � 3.9 and 1.0 m, and the corresponding standard deviations are between 3.0 and 3.7 m. With increasing SRTM


Journal of Geodynamics | 2002

Enhanced geolocation of spaceborne laser altimeter surface returns: parameter calibration from the simultaneous reduction of altimeter range and navigation tracking data

Scott B. Luthcke; Claudia C. Carabajal; David D. Rowlands

Abstract The accurate geolocation of a laser altimeter’s surface return, the spot from which the laser energy reflects on the Earth’s surface, is a critical issue in the scientific application of these data. Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate these data. Detailed laser altimeter measurement models have been developed and implemented within precision orbit determination software providing the capability to simultaneously estimate the orbit and geolocation parameters from a combined reduction of altimeter range and spacecraft tracking data. In preparation for NASA’s future dedicated Earth observing spaceborne laser altimeter missions, the Vegetation Canopy Lidar (VCL) and the Ice, Cloud and land Elevation Satellite (ICESat), data from two Shuttle Laser Altimeter (SLA) missions have been reprocessed to test and refine these algorithms and to develop the analysis methodologies for the production and verification of enhanced geolocation products. Both direct altimetry and dynamic crossover data have been reduced in combination with navigation tracking data to obtain significant improvement in SLA geolocation accuracy. Residual and overlap precision tests indicate a factor of two improvement over the previously released SLA Standard Data Products, showing 40-m RMS horizontal and 26-cm RMS elevation geolocation precision for the long SLA-01 arcs. Accuracy estimates by comparing SLA profiles to Digital Elevation Models show horizontal positioning accuracy at the 60-m (1σ) level. Vertical accuracies, on the order of 1 m (1σ) for low slope surfaces are now dominated by the ±75-cm one-way range resolution of the instrument. Comparable relative improvements are also observed in the analysis of the SLA-02 data. The analyses show that complex temporal variations in parameters (i.e., pointing) can be recovered and not just simple biases. The methodology and results obtained from the detailed analysis are discussed in this paper, along with their applicability to VCL and ICESat.


International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications | 2011

Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control

Claudia C. Carabajal; David J. Harding; J.-P. Boy; Jeffrey J. Danielson; Dean B. Gesch; Vijay P. Suchdeo

Supported by NASAs Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (± 86° latitudes) with unprecedented accuracy, sampling the Earths surface at discrete ~50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.


international geoscience and remote sensing symposium | 2010

Icesat lidar and global digital elevation models: applications to desdyni

Claudia C. Carabajal; David J. Harding; Vijay P. Suchdeo

Geodetic control is extremely important in the production and quality control of topographic data sets, enabling elevation results to be referenced to an absolute vertical datum. Global topographic data with improved geodetic accuracy achieved using global Ground Control Point (GCP) databases enable more accurate characterization of land topography and its change related to solid Earth processes, natural hazards and climate change. The multiple-beam lidar instrument that will be part of the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission will provide a comprehensive, global data set that can be used for geodetic control purposes. Here we illustrate that potential using data acquired by NASAs Ice, Cloud and land Elevation Satellite (ICEsat) that has acquired single-beam, globally distributed laser altimeter profiles (± 86º) since February of 2003 [1, 2]. The profiles provide a consistently referenced elevation data set with unprecedented accuracy and quantified measurement errors that can be used to generate GCPs with sub-decimeter vertical accuracy and better than 10 m horizontal accuracy. Like the planned capability for DESDynI, ICESat records a waveform that is the elevation distribution of energy reflected within the laser footprint from vegetation, where present, and the ground where illuminated through gaps in any vegetation cover [3]. The waveform enables assessment of Digital Elevation Models (DEMs) with respect to the highest, centroid, and lowest elevations observed by ICESat and in some cases with respect to the ground identified beneath vegetation cover. Using the ICESat altimetry data we are developing a comprehensive database of consistent, global, geodetic ground control that will enhance the quality of a variety of regional to global DEMs. Here we illustrate the accuracy assessment of the Shuttle Radar Topography Mission (SRTM) DEM produced for Australia, documenting spatially varying elevation biases of several meters in magnitude.


Geophysical Research Letters | 2006

Correction to “Estimates of forest canopy height and aboveground biomass using ICESat”

Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando D. B. Espirito-Santo; M. O. Hunter; Raimundo de Oliveira; Plínio Barbosa de Camargo

[1] Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of ICESat data to estimate forest height is complicated by the pulse broadening associated with large-footprint, waveform-sampling lidar. We combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broadleaf forests in Tennessee, and temperate needleleaf forests in Oregon. Final models for each site explained between 59% and 68% of variance in field-measured forest canopy height (RMSE between 4.85 and 12.66 m). In addition, ICESat-derived heights for the Brazilian plots were correlated with field-estimates of aboveground biomass (r = 73%, RMSE = 58.3 Mgha ). Citation: Lefsky, M. A., D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. Del Bom Espirito-Santo, M. O. Hunter, and R. de Oliveira Jr. (2005), Estimates of forest canopy height and aboveground biomass using ICESat, Geophys. Res. Lett., 32, L22S02, doi:10.1029/2005GL023971.


Surveys in Geophysics | 2001

Improvements In Spaceborne Laser Altimeter Data Geolocation

Scott B. Luthcke; Claudia C. Carabajal; David D. Rowlands; D.E. Pavlis

For many science applications of laser altimetry, the preciselocation of the point on the Earths surface from which the laser energy reflects is required.The laser surface return geolocation is computed from the laser altimeters range observation in combinationwith precise knowledge of spacecraft position, instrument tracking points referenced to thespacecraft center of mass, spacecraft attitude, laser orientation, observation and attitude data timetags. An approach that simultaneously estimates the geometric and dynamic parameters of the orbit andlaser range measurement model by a combined reduction of both spacecraft tracking and laseraltimeter surface range residuals is applied to produce improved pointing, orbit and range bias solutionsand therefore improved geolocation. The data acquired by the Shuttle Laser Altimeter (SLA)-01 and 02missions constitute a valuable pathfinder data set to test algorithms in preparation for the upcoming VCL(Vegetation Canopy Lidar) and ICESat (Ice, Cloud and Elevation Satellite) missions. Results from apreliminary SLA-01 data analysis are presented along with a brief description of the methodology and itsapplication to future spaceborne missions.


Nature | 2016

Morton et al. reply

Douglas C. Morton; Jyoteshwar R. Nagol; Claudia C. Carabajal; Jacqueline Rosette; Michael Palace; Bruce D. Cook; Eric F. Vermote; David J. Harding; Peter R. J. North

Multiple mechanisms could lead to up-regulation of dry-season photosynthesis in Amazon forests, including canopy phenology and illumination geometry. We specifically tested two mechanisms for phenology-driven changes in Amazon forests during dry-season months, and the combined evidence from passive optical and lidar satellite data was incompatible with large net changes in canopy leaf area or leaf reflectance suggested by previous studies. We therefore hypothesized that seasonal changes in the fraction of sunlit and shaded canopies, one aspect of bidirectional reflectance effects in Moderate Resolution Imaging Spectroradiometer (MODIS) data, could alter light availability for dry-season photosynthesis and the photosynthetic capacity of Amazon forests without large net changes in canopy composition. Subsequent work supports the hypothesis that seasonal changes in illumination geometry and diffuse light regulate light saturation in Amazon forests. These studies clarify the physical mechanisms that govern light availability in Amazon forests from seasonal variability in direct and diffuse illumination. Previously, in the debate over light limitation of Amazon forest productivity, seasonal changes in the distribution of light within complex Amazon forest canopies were confounded with dry-season increases in total incoming photosynthetically active radiation. In the accompanying Comment, Saleska et al. do not fully account for this confounding effect of forest structure on photosynthetic capacity.


IEEE Transactions on Geoscience and Remote Sensing | 2015

Development of Onboard Digital Elevation and Relief Databases for ICESat-2

Holly W. Leigh; Lori A. Magruder; Claudia C. Carabajal; Jack L. Saba; Jan F. McGarry

The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), the successor mission to ICESat, is planned to launch in 2017. The ICESat-2 spacecraft will carry the Advanced Topographic Laser Altimeter System (ATLAS). ATLAS will be the most precise space-based photon-counting laser altimeter to date, and its measurement strategy requires the development of sophisticated onboard receiver algorithms to ensure success in downlinking the science data in the telemetry and the subsequent development of science data products. A set of databases, the digital elevation model and digital relief map (DRM), has been developed for use in ATLAS onboard signal processing. A number of elevation data sets were combined to create the global elevation and relief databases, and a method for calculating along-track relief from raster elevation data sets was devised. A technique for deriving the accuracy of the DRM relative to the magnitude of relief was developed to inform the selection of DRM margin values.

Collaboration


Dive into the Claudia C. Carabajal's collaboration.

Top Co-Authors

Avatar

David J. Harding

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Scott B. Luthcke

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David D. Rowlands

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jeanne Sauber

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Frank G. Lemoine

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jack L. Bufton

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence J. Sabaka

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Bruce G. Bills

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dean B. Gesch

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge