Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Mapelli is active.

Publication


Featured researches published by Claudio Mapelli.


Journal of the American Chemical Society | 2015

Ligand-Enabled β-C–H Arylation of α-Amino Acids Using a Simple and Practical Auxiliary

Gang Chen; Toshihiko Shigenari; Pankaj Jain; Zhipeng Zhang; Zhong Jin; Jian He; Suhua Li; Claudio Mapelli; Michael M. Miller; Michael A. Poss; Paul Michael Scola; Kap-Sun Yeung; Jin-Quan Yu

Pd-catalyzed β-C-H functionalizations of carboxylic acid derivatives using an auxiliary as a directing group have been extensively explored in the past decade. In comparison to the most widely used auxiliaries in asymmetric synthesis, the simplicity and practicality of the auxiliaries developed for C-H activation remains to be improved. We previously developed a simple N-methoxyamide auxiliary to direct β-C-H activation, albeit this system was not compatible with carboxylic acids containing α-hydrogen atoms. Herein we report the development of a pyridine-type ligand that overcomes this limitation of the N-methoxyamide auxiliary, leading to a significant improvement of β-arylation of carboxylic acid derivatives, especially α-amino acids. The arylation using this practical auxiliary is applied to the gram-scale syntheses of unnatural amino acids, bioactive molecules, and chiral bis(oxazoline) ligands.


PLOS ONE | 2012

Annexin A2 Is a Natural Extrahepatic Inhibitor of the PCSK9-Induced LDL Receptor Degradation

Nabil G. Seidah; Steve Poirier; Maxime Denis; Rex A. Parker; Bowman Miao; Claudio Mapelli; Annik Prat; Hanny Wassef; Jean Davignon; Katherine A. Hajjar; Gaétan Mayer

Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2) as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2−/− mice revealed: i) a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii) a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2−/− tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.


Biochemistry | 1994

Orientation of peptide fragments from Sos proteins bound to the N-terminal SH3 domain of Grb2 determined by NMR spectroscopy.

Michael Wittekind; Claudio Mapelli; Bennett T. Farmer; Ki-Ling Suen; Valentina Goldfarb; Jonglin Tsao; Thomas B. Lavoie; Mariano Barbacid; Chester A. Meyers; Luciano Mueller

NMR spectroscopy has been used to characterize the protein-protein interactions between the mouse Grb2 (mGrb2) N-terminal SH3 domain complexed with a 15-residue peptide (SPLLPKLPP-KTYKRE) corresponding to residues 1264-1278 of the mouse Sos-2 (mSos-2) protein. Intermolecular interactions between the peptide and 13C-15N-labeled SH3 domain were identified in half-reverse-filtered 2D and 3D NOESY experiments. Assignments for the protons involved in interactions between the peptide and the SH3 domain were confirmed in a series of NOESY experiments using a set of peptides in which different leucine positions were fully deuterated. The peptide ligand-binding site of the mGrb2 N-terminal SH3 domain is defined by the side chains of specific aromatic residues (Tyr7, Phe9, Trp36, Tyr52) that form two hydrophobic subsites contacting the side chains of the peptide Leu4 and Leu7 residues. An adjacent negatively charged subsite on the SH3 surface is likely to interact with the side chain of a basic residue at peptide position 10 that we show to be involved in binding. The peptide-binding site of the SH3 is characterized by large perturbations of amide chemical shifts when the peptide is added to the SH3 domain. The mGrb2 N-terminal SH3 domain structure in the complex is well-defined (backbone RMSD of 0.56 +/- 0.21 calculated over the backbone N, C alpha, and C atoms of residues 1-54). The structure of the peptide in the complex is less well-defined but displays a distinct orientation.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Medicinal Chemistry | 2009

Eleven Amino Acid Glucagon-like Peptide-1 Receptor Agonists with Antidiabetic Activity

Claudio Mapelli; Sesha Natarajan; J.-P. Meyer; Margarita M. Bastos; Michael S. Bernatowicz; Ving G. Lee; Jelka Pluscec; Douglas James Riexinger; Ellen Sieber-McMaster; Keith L. Constantine; Constance Smith-Monroy; Rajasree Golla; Zhengping Ma; Daniel Longhi; Dan Shi; Li Xin; Joseph R. Taylor; Barry Koplowitz; Cecilia L. Chi; Ashish Khanna; Gordon W. Robinson; Ramakrishna Seethala; Ildiko Antal-Zimanyi; Robert H. Stoffel; Songping Han; Jean M. Whaley; Christine Huang; John Krupinski; William R. Ewing

Glucagon-like peptide 1 (GLP-1) is a 30 or 31 amino acid peptide hormone that contributes to the physiological regulation of glucose homeostasis and food intake. Herein, we report the discovery of a novel class of 11 amino acid GLP-1 receptor agonists. These peptides consist of a structurally optimized 9-mer, which is closely related to the N-terminal 9 amino acids of GLP-1, linked to a substituted C-terminal biphenylalanine (BIP) dipeptide. SAR studies resulted in 11-mer GLP-1R agonists with similar in vitro potency to the native 30-mer. Peptides 21 and 22 acutely reduced plasma glucose excursions and increased plasma insulin concentrations in a mouse model of diabetes. These peptides also showed sustained exposures over several hours in mouse and dog models. The described 11-mer GLP-1 receptor agonists represent a new tool in further understanding GLP-1 receptor pharmacology that may lead to novel antidiabetic agents.


Science | 2017

Formation of α-chiral centers by asymmetric β-C(sp3)–H arylation, alkenylation, and alkynylation

Qing-Feng Wu; Peng-Xiang Shen; Jian He; Xiao-Bing Wang; Forrest Zhang; Qian Shao; Ru-Yi Zhu; Claudio Mapelli; Jennifer X. Qiao; Michael A. Poss; Jin-Quan Yu

Expressed preferences among methyl groups Targeting just one of the two equivalent branch ends in Y-shaped molecules is a particular challenge for catalysis. Enzymes manage to do it by grasping the whole molecule, octopus-like, but often enzymes cannot tolerate minor structural variations. Wu et al. produced an amide-directed palladium catalyst that, armed with oxazoline-derived chiral ligands, could reliably attack just one methyl member of isopropyl groups. The reaction successfully replaced C–H bonds with C–C bonds in a wide variety of aryl and vinyl coupling partners. Science, this issue p. 499 A chiral palladium catalyst directs carbon-carbon bond formation at just one of two methyl constituents of an isopropyl group. The enzymatic β-C–H hydroxylation of the feedstock chemical isobutyric acid has enabled the asymmetric synthesis of a wide variety of polyketides. The analogous transition metal–catalyzed enantioselective β-C–H functionalization of isobutyric acid–derived substrates should provide a versatile method for constructing useful building blocks with enantioenriched α-chiral centers from this abundant C-4 skeleton. However, the desymmetrization of ubiquitous isopropyl moieties by organometallic catalysts has remained an unanswered challenge. Herein, we report the design of chiral mono-protected aminomethyl oxazoline ligands that enable desymmetrization of isopropyl groups via palladium insertion into the C(sp3)–H bonds of one of the prochiral methyl groups. We detail the enantioselective β-arylation, -alkenylation, and -alkynylation of isobutyric acid/2-aminoisobutyric acid derivatives, which may serve as a platform for the construction of α-chiral centers.


Peptides | 2010

Identification of potent 11mer Glucagon-Like Peptide-1 Receptor agonist peptides with novel C-terminal amino acids: Homohomophenylalanine analogs

Tasir S. Haque; Ving G. Lee; Douglas James Riexinger; Ming Lei; Sarah E. Malmstrom; Li Xin; Songping Han; Claudio Mapelli; Christopher B. Cooper; Ge Zhang; William R. Ewing; John Krupinski

We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.


Journal of Labelled Compounds and Radiopharmaceuticals | 2014

Synthesis of a stable isotopically labeled universal surrogate peptide for use as an internal standard in LC‐MS/MS bioanalysis of human IgG and Fc‐fusion protein drug candidates

Kimberly Voronin; Alban Allentoff; Samuel J. Bonacorsi; Claudio Mapelli; Sharon Gong; Ving G. Lee; Douglas James Riexinger; Nishith Sanghvi; Hao Jiang; Jianing Zeng

The synthesis of a 16-residue, stable isotopically labeled peptide is described for use as a LC-MS/MS (Liquid chromatography-mass spectrometry/mass spectrometry) internal standard in bioanalytical studies. This peptide serves as a single universal surrogate peptide capable of quantifying a wide variety of immunoglobulin G and Fc-fusion protein drug candidates in animal species used in pre-clinical drug development studies. An efficient synthesis approach for this peptide was developed using microwave-assisted solid phase peptide synthesis (SPPS) techniques, which included the use of a pseudoproline dipeptide derivative. The corresponding conventional room temperature SPPS was unsuccessful and gave only mixtures of truncated products. Stable-labeled leucine was incorporated as a single residue via manual coupling of commercially available Fmoc-[(13) C6 , (15) N]-l-leucine onto an 11-unit segment followed by automated microwave-assisted elaboration of the final four residues. Using this approach, the desired labeled peptide was prepared in high purity and in sufficient quantities for long-term supplies as a bioanalytical internal standard. The results strongly demonstrate the importance of utilizing both microwave-assisted peptide synthesis and pseudoproline dipeptide techniques to allow the preparation of labeled peptides with highly lipophilic and sterically hindered side-chains.


Peptides | 2010

Exploration of structure–activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis

Tasir S. Haque; Rogelio L. Martinez; Ving G. Lee; Douglas G. Riexinger; Ming Lei; Ming Feng; Barry Koplowitz; Claudio Mapelli; Christopher B. Cooper; Ge Zhang; Christine Huang; William R. Ewing; John Krupinski

We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.


Archive | 2002

Human glucagon-like-peptide-1 mimics and their use in the treatment of diabetes and related conditions

Sesha Natarajan; Claudio Mapelli; Margarita M. Bastos; Michael S. Bernatowicz; Ving G. Lee; William R. Ewing


Journal of Molecular Biology | 1997

Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts.

Michael Wittekind; Claudio Mapelli; Ving G. Lee; Valentina Goldfarb; Mark S. Friedrichs; Chester A. Meyers; Luciano Mueller

Collaboration


Dive into the Claudio Mapelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge