Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Pagani is active.

Publication


Featured researches published by Claudio Pagani.


Science | 2005

Bright X-ray Flares in Gamma-Ray Burst Afterglows

David N. Burrows; Patrizia Romano; A. Falcone; Shiho Kobayashi; Bing Zhang; A. Moretti; Paul T. O'Brien; Michael R. Goad; Sergio Campana; Kim L. Page; Lorella Angelini; S. D. Barthelmy; Andrew P. Beardmore; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; Derek B. Fox; Paolo Giommi; J. E. Hill; J. A. Kennea; Hans A. Krimm; Vanessa Mangano; Francis E. Marshall; P. Meszaros; David C. Morris; John A. Nousek; Julian P. Osborne; Claudio Pagani; Matteo Perri

Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.


Astrophysical Journal Supplement Series | 2010

The 22-Month Swift-BAT All-Sky Hard X-ray Survey

J. Tueller; W. H. Baumgartner; Craig B. Markwardt; G. K. Skinner; R. F. Mushotzky; M. Ajello; S. D. Barthelmy; A. P. Beardmore; W. N. Brandt; D. N. Burrows; Guido Chincarini; Sergio Campana; J. R. Cummings; G. Cusumano; P. A. Evans; E. E. Fenimore; N. Gehrels; Olivier Godet; Dirk Grupe; S. T. Holland; J. A. Kennea; Hans A. Krimm; M. Koss; A. Moretti; Koji Mukai; J. P. Osborne; Takashi Okajima; Claudio Pagani; Kim L. Page; David M. Palmer

We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ~30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ~ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 × 10–11 erg cm–2 s–1 (1 mCrab) over most of the sky in the 14-195 keV band.


Nature | 2005

An unexpectedly rapid decline in the X-ray afterglow emission of long gamma-ray bursts.

Gianpiero Tagliaferri; Mike R. Goad; Guido Chincarini; A. Moretti; Sergio Campana; David N. Burrows; Matteo Perri; S. D. Barthelmy; N. Gehrels; Hans A. Krimm; Takanori Sakamoto; Pawan Kumar; P. Meszaros; Shiho Kobayashi; Bing Zhang; L. Angelini; P. L. Banat; A. P. Beardmore; Milvia Capalbi; S. Covino; G. Cusumano; P. Giommi; Olivier Godet; J. E. Hill; J. A. Kennea; Vanessa Mangano; David C. Morris; John A. Nousek; Paul T. O'Brien; Julian P. Osborne

‘Long’ γ-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the γ-rays we see. As the jet travels further outward into the surrounding circumstellar medium, ‘external’ shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows.


The Astrophysical Journal | 2007

The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Temporal Properties and Morphology

Guido Chincarini; A. Moretti; Patrizia Romano; A. Falcone; David C. Morris; Judith Lea Racusin; Sergio Campana; S. Covino; C. Guidorzi; G. Tagliaferri; D. N. Burrows; Claudio Pagani; M. C. Stroh; Dirk Grupe; Milvia Capalbi; G. Cusumano; N. Gehrels; P. Giommi; V. La Parola; Vanessa Mangano; T. Mineo; John A. Nousek; P. T. O’Brien; Kim L. Page; Matteo Perri; E. Troja; R. Willingale; Bing Zhang

We present the first systematic investigation of the morphological and timing properties of flares in GRBs observed by Swift XRT. We consider a large sample drawn from all GRBs detected by Swift, INTEGRAL, and HETE-2 prior to 2006 January 31, which had an XRT follow-up and which showed significant flaring. Our sample of 33 GRBs includes long and short, at low and high redshift, and a total of 69 flares. The strongest flares occur in the early phases, with a clear anticorrelation between the flare peak intensity and the flare time of occurrence. Fitting each X-ray flare with a Gaussian model, we find that the mean ratio of the width and peak time is --> ? t/t = 0.13 ? 0.10, albeit with a large scatter. Late flares at times >2000 s have long durations, -->? t > 300 s, and can be very energetic compared to the underlying continuum. We further investigated whether there is a clear link between the number of pulses detected in the prompt phase by BAT and the number of X-ray flares detected by XRT, finding no correlation. However, we find that the distribution of intensity ratios between successive BAT prompt pulses and that between successive XRT flares is the same, an indication of a common origin for gamma-ray pulses and X-ray flares. All evidence indicates that flares are indeed related to the workings of the central engine and, in the standard fireball scenario, originate from internal shocks rather than external shocks. While all flares can be explained by long-lasting engine activity, 29/69 flares may also be explained by refreshed shocks. However, 10 can only be explained by prolonged activity of the central engine.


Nature | 2009

GRB 090423 at a redshift of z ≈ 8.1

R. Salvaterra; M. Della Valle; Sergio Campana; Guido Chincarini; S. Covino; P. D’Avanzo; Alberto Fernandez-Soto; C. Guidorzi; F. Mannucci; Raffaella Margutti; C. C. Thöne; L. A. Antonelli; S. D. Barthelmy; M. De Pasquale; V. D’Elia; F. Fiore; Dino Fugazza; L. K. Hunt; E. Maiorano; S. Marinoni; F. E. Marshall; Emilio Molinari; John A. Nousek; E. Pian; Judith Lea Racusin; L. Stella; L. Amati; G. Andreuzzi; G. Cusumano; E. E. Fenimore

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = . This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.


Nature | 2008

Broadband observations of the naked-eye gamma-ray burst GRB 080319B

Judith Lea Racusin; S. V. Karpov; Marcin Sokolowski; Jonathan Granot; Xue-Feng Wu; V. Pal’shin; S. Covino; A. J. van der Horst; S. R. Oates; Patricia Schady; R. J. E. Smith; J. R. Cummings; Rhaana L. C. Starling; Lech Wiktor Piotrowski; Bin-Bin Zhang; P. A. Evans; S. T. Holland; K. Malek; M. T. Page; L. Vetere; R. Margutti; C. Guidorzi; Atish Kamble; P. A. Curran; A. P. Beardmore; C. Kouveliotou; Lech Mankiewicz; Andrea Melandri; P. T. O’Brien; Kim L. Page

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.


The Astrophysical Journal | 2007

The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Spectral Properties and Energetics

A. Falcone; David C. Morris; Judith Lea Racusin; Guido Chincarini; A. Moretti; Patrizia Romano; D. N. Burrows; Claudio Pagani; M. C. Stroh; Dirk Grupe; Sergio Campana; S. Covino; Gianpiero Tagliaferri; R. Willingale; N. Gehrels

GRB observations with Swift produced the initially surprising result that many bursts have large, late-time X-ray flares. The flares were sometimes intense, had rapid rise and decay phases, and occurred late relative to the prompt phase. Many GRBs have had several flares, which were sometimes overlapping. The origin of the flares can be investigated by comparing the spectra during the flares to those of the afterglow and the initial prompt emission. In this work we have analyzed all significant X-ray flares from the first 110 GRBs observed by Swift. Significant X-ray flares (>3 -->σ ) were found in 33 of these GRBs, with 77 flares detected. A variety of spectral models have been fit to each flare. We find that the spectral fits sometimes favor a Band function model, which is more akin to the prompt emission than to that of the afterglow. While some flares are approximately as energetic as the prompt GRB emission, we find that the average fluence of the flares is approximately 10 times below the average prompt GRB fluence. We also find that the peak energy of the observed flares is typically in the soft X-ray band, as one might expect due to the X-ray selection of the sample. These results, when combined with those presented in the companion paper on temporal properties of flares, support the hypothesis that many X-ray flares are from late-time activity of the internal engine that spawned the initial GRB, not from an afterglow-related effect.


The Astrophysical Journal | 2006

SWIFT OBSERVATIONS OF THE X-RAY-BRIGHT GRB 050315

S. Vaughan; Mike R. Goad; A. P. Beardmore; P. T. O’Brien; Julian P. Osborne; Kim L. Page; S. D. Barthelmy; David N. Burrows; Sergio Campana; John K. Cannizzo; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; P. Giommi; Olivier Godet; J. E. Hill; Shiho Kobayashi; Pawan Kumar; V. La Parola; Andrew J. Levan; Vanessa Mangano; P. Meszaros; A. Moretti; David C. Morris; John A. Nousek; Claudio Pagani; David M. Palmer; Judith Lea Racusin; Patrizia Romano

This paper discusses Swift observations of the � -ray burst GRB 050315 (z ¼ 1:949) from 80 s to 10 days after the onset of the burst. The X-ray light curve displayed a steep early decay (t � 5 ) for � 200 s and several breaks. However, both the prompt hard X-ray/� -ray emission (observed by the BAT) and the first � 300 s of X-ray emission (observed bytheXRT)canbeexplainedbyexponentialdecays,withsimilardecayconstants.ExtrapolatingtheBATlightcurve into the XRT band suggests that the rapidly decaying, early X-ray emission was simply a continuation of the fading promptemission;thisstrongsimilaritybetweentheprompt � -rayandearlyX-rayemissionmayberelatedtothesimple temporal and spectral character of this X-ray–rich GRB. Theprompt (BAT) spectrum was steep down to � 15keVand appeared to continue through the XRT bandpass, implying a low peak energy, inconsistent with the Amati relation. Following the initial steep decline, the X-ray afterglow did not fade for � 1:2 ; 10 4 s, after which time it decayed with at emporal index of� � 0:7, followed by a second break at � 2:5 ; 10 5 s to a slope of � � 2. The apparent ‘‘plateau’’ in the X-raylight curve, after the early rapid decay, makes this one of the most extreme examples of the steep-flat-steep X-ray light curves revealed by Swift. If the second afterglow break is identified with a jet break, then the jet opening


The Astrophysical Journal | 2006

The Giant X-Ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity

A. Falcone; D. N. Burrows; Davide Lazzati; Sergio Campana; Shiho Kobayashi; Bing Zhang; P. Meszaros; Kim L. Page; J. A. Kennea; Patrizia Romano; Claudio Pagani; L. Angelini; A. P. Beardmore; Milvia Capalbi; Guido Chincarini; G. Cusumano; P. Giommi; Mike R. Goad; Olivier Godet; Dirk Grupe; J. E. Hill; V. La Parola; Vanessa Mangano; A. Moretti; John A. Nousek; P. T. O’Brien; Julian P. Osborne; Matteo Perri; Gianpiero Tagliaferri; Alan A. Wells

Until recently, X-ray flares during the afterglow of gamma-ray bursts (GRBs) were a rarely detected phenomenon; thus, their nature is unclear. During the afterglow of GRB 050502B, the largest X-ray flare ever recorded rose rapidly above the afterglow light curve detected by the Swift X-Ray Telescope. The peak flux of the flare was >500 times that of the underlying afterglow, and it occurred >12 minutes after the nominal prompt burst emission. The fluence of this X-ray flare, (1.0 ± 0.05) × 10-6 ergs cm-2 in the 0.2-10.0 keV energy band, exceeded the fluence of the nominal prompt burst. The spectra during the flare were significantly harder than those measured before and after the flare. Later in time, there were additional flux increases detected above the underlying afterglow, as well as a break in the afterglow light curve. All evidence presented below, including spectral and, particularly, timing information during and around the giant flare, suggests that this giant flare was the result of internal dissipation of energy due to late central engine activity, rather than an afterglow-related effect. We also find that the data are consistent with a second central engine activity episode, in which the ejecta is moving slower than that of the initial episode, causing the giant flare and then proceeding to overtake and refresh the afterglow shock, thus causing additional activity at even later times in the light curve.


web science | 2009

A new measurement of the cosmic X-ray background

A. Moretti; Claudio Pagani; G. Cusumano; Sergio Campana; Matteo Perri; A. F. Abbey; M. Ajello; A. P. Beardmore; D. N. Burrows; Guido Chincarini; Olivier Godet; C. Guidorzi; J. E. Hill; J. A. Kennea; John A. Nousek; J. P. Osborne; G. Tagliaferri

This work is supported at OAB-INAF by ASI grant I/011/07/0, at PSU by NASA contract NAS5-00136. A.A., A.B., O.G. and J.O. acknowledge STFC funding.

Collaboration


Dive into the Claudio Pagani's collaboration.

Top Co-Authors

Avatar

J. A. Kennea

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kim L. Page

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

S. D. Barthelmy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. M. Palmer

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. T. Holland

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge