Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clayton Deming is active.

Publication


Featured researches published by Clayton Deming.


Science | 2009

Topographical and temporal diversity of the human skin microbiome.

Elizabeth A. Grice; Heidi H. Kong; Sean Conlan; Clayton Deming; Joie Davis; Alice C. Young; Nisc Comparative Sequencing Program; Gerard G. Bouffard; Robert W. Blakesley; Patrick R. Murray; Eric D. Green; Maria L. Turner; Julia A. Segre

The Close and Personal Biome Fortunately, our skin is readily accessible for ecological studies of the microbial communities that influence health and disease states. Grice et al. (p. 1190) present a metagenomic survey of body sites from 10 healthy human individuals sampled over time. Although, altogether 18 phyla were discovered, only a few predominated. The most diverse communities were found on the forearm and the least behind the ear, but between people the microorganisms living behind the knees, in the elbow, and behind the ear were most similar. This finding might have some bearing on the common occurrence of atopic dermatitis in these zones, although no similar relationship was discerned between skin microbial flora and psoriasis. The human skin provides a landscape of dry, damp, and greasy niches for a diversity of symbiotic microorganisms. Human skin is a large, heterogeneous organ that protects the body from pathogens while sustaining microorganisms that influence human health and disease. Our analysis of 16S ribosomal RNA gene sequences obtained from 20 distinct skin sites of healthy humans revealed that physiologically comparable sites harbor similar bacterial communities. The complexity and stability of the microbial community are dependent on the specific characteristics of the skin site. This topographical and temporal survey provides a baseline for studies that examine the role of bacterial communities in disease states and the microbial interdependencies required to maintain healthy skin.


Science | 2012

Compartmentalized Control of Skin Immunity by Resident Commensals

Shruti Naik; Nicolas Bouladoux; Christoph Wilhelm; Michael J. Molloy; Rosalba Salcedo; Wolfgang Kastenmüller; Clayton Deming; Mariam Quiñones; Lily Koo; Sean Conlan; Sean P. Spencer; Jason A. Hall; Amiran K. Dzutsev; Heidi Kong; Daniel J. Campbell; Giorgio Trinchieri; Julia A. Segre; Yasmine Belkaid

Skin Specifics Much of the recent attention paid to the trillions of bacteria that colonize our bodies has been given to the bacteria that reside in the gut. Naik et al. (p. 1115, published online 26 July) report that colonization of the skin with commensal bacteria is important for tuning effector T cell responses in the skin and for protective immunity against cutaneous infection with the parasite Leishmania major in mice. In contrast, selective depletion of the gut microbiota, which plays an important role in modulating immune responses in the gut, had no impact on T cell responses in the skin. The skin microbiota play a selective role in modulating immunity in the skin of mice. Intestinal commensal bacteria induce protective and regulatory responses that maintain host-microbial mutualism. However, the contribution of tissue-resident commensals to immunity and inflammation at other barrier sites has not been addressed. We found that in mice, the skin microbiota have an autonomous role in controlling the local inflammatory milieu and tuning resident T lymphocyte function. Protective immunity to a cutaneous pathogen was found to be critically dependent on the skin microbiota but not the gut microbiota. Furthermore, skin commensals tuned the function of local T cells in a manner dependent on signaling downstream of the interleukin-1 receptor. These findings underscore the importance of the microbiota as a distinctive feature of tissue compartmentalization, and provide insight into mechanisms of immune system regulation by resident commensal niches in health and disease.


Nature | 2013

Topographic diversity of fungal and bacterial communities in human skin

Keisha Findley; Julia Oh; Joy Y Yang; Sean Conlan; Clayton Deming; Jennifer A. Meyer; Deborah Schoenfeld; Effie Nomicos; Morgan Park; Heidi H. Kong; Julia A. Segre

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites—plantar heel, toenail and toe web—showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis.


Nature | 2015

Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

Shruti Naik; Nicolas Bouladoux; Jonathan L. Linehan; Seong-Ji Han; Oliver J. Harrison; Christoph Wilhelm; Sean Conlan; Sarah Himmelfarb; Allyson L. Byrd; Clayton Deming; Mariam Quiñones; Jason M. Brenchley; Heidi H. Kong; Roxanne Tussiwand; Kenneth M. Murphy; Miriam Merad; Julia A. Segre; Yasmine Belkaid

The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.


Science Translational Medicine | 2014

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae

Sean Conlan; Pamela J. Thomas; Clayton Deming; Morgan Park; Anna F. Lau; John P. Dekker; Evan S. Snitkin; Tyson A. Clark; Khai Luong; Yi Song; Yu-Chih Tsai; Matthew Boitano; Jyoti G. Dayal; Shelise Brooks; Brian Schmidt; Alice C. Young; James W. Thomas; Gerard G. Bouffard; Robert W. Blakesley; Nisc Comparative Sequencing Program; James C. Mullikin; Jonas Korlach; David K. Henderson; Karen M. Frank; Tara N. Palmore; Julia A. Segre

Single-molecule sequencing of bacteria at the NIH Clinical Center documents diverse plasmids encoding antibiotic resistance and their transfer between microbes. How Antibiotic Resistance Spreads Among Bacteria Antibiotic-resistant microbes are spreading at an alarming rate in health care facilities throughout the world. Conlan et al. use a new DNA sequencing method to take a close look at one way in which antibiotic resistance spreads. With single-molecule sequencing, the authors completely characterized individual plasmids, the circular bits of DNA that carry the genes for antibiotic resistance in bacteria. They focused on resistance to the carbapenems, a class of antibiotics that is often used for infections that do not respond to more conventional antimicrobial agents. By using this approach in their microbial surveillance program at the NIH Clinical Center, the authors found evidence that plasmids carrying carbapenemase genes moved from one microbial species to another within the hospital environment. They also used the technique to test hypotheses about patient-to-patient transmission and to characterize a previously undescribed carbapenemase-encoding plasmid carried by diverse bacterial species that could cause dangerous clinical infections. Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care–associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.


Journal of Clinical Investigation | 2013

Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques

Nichole R. Klatt; Xiaoyong Sun; Carol L. Vinton; Nicholas T. Funderburg; David R. Morcock; Mariam Quiñones; Clayton Deming; Molly R. Perkins; Daria J. Hazuda; Michael D. Miller; Michael M. Lederman; Julie Segre; Jeffrey D. Lifson; Elias K. Haddad; Jacob D. Estes; Jason M. Brenchley

HIV infection results in gastrointestinal (GI) tract damage, microbial translocation, and immune activation, which are not completely ameliorated with suppression of viremia by antiretroviral (ARV) therapy. Furthermore, increased morbidity and mortality of ARV-treated HIV-infected individuals is associated with these dysfunctions. Thus, to enhance GI tract physiology, we treated SIV-infected pigtail macaques with ARVs, probiotics, and prebiotics or with ARVs alone. This synbiotic treatment resulted in increased frequency and functionality of GI tract APCs, enhanced reconstitution and functionality of CD4+ T cells, and reduced fibrosis of lymphoid follicles in the colon. Thus, ARV synbiotic supplementation in HIV-infected individuals may improve GI tract immunity and thereby mitigate inflammatory sequelae, ultimately improving prognosis.


Human Molecular Genetics | 2010

A milieu of regulatory elements in the epidermal differentiation complex syntenic block: implications for atopic dermatitis and psoriasis

Cristina de Guzman Strong; Sean Conlan; Clayton Deming; Jun Cheng; Karen E. Sears; Julia A. Segre

Two common inflammatory skin disorders with impaired barrier, atopic dermatitis (AD) and psoriasis, share distinct genetic linkage to the Epidermal Differentiation Complex (EDC) locus on 1q21. The EDC is comprised of tandemly arrayed gene families encoding proteins involved in skin cell differentiation. Discovery of semi-dominant mutations in filaggrin (FLG) associated with AD and a copy number variation within the LCE genes associated with psoriasis provide compelling evidence for the role of EDC genes in the pathogenesis of these diseases. To date, little is known about the potentially complex regulatory landscape within the EDC. Here, we report a computational approach to identify conserved non-coding elements (CNEs) in the EDC queried for regulatory function. Coordinate expression of EDC genes during mouse embryonic skin development and a striking degree of synteny and linearity in the EDC locus across a wide range of mammalian (placental and marsupial) genomes suggests an evolutionary conserved regulatory milieu in the EDC. CNEs identified by comparative genomics exhibit dynamic regulatory activity (enhancer or repressor) in differentiating or proliferating conditions. We further demonstrate epidermal-specific, developmental in vivo enhancer activities (DNaseI and transgenic mouse assays) in CNEs, including one within the psoriasis-associated deletion, LCE3C_LCE3B-del. Together, our multidisciplinary study features a network of regulatory elements coordinating developmental EDC gene expression as an unexplored resource for genetic variants in skin diseases.


Mbio | 2016

Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization

Sean Conlan; Morgan Park; Clayton Deming; Pamela J. Thomas; Alice C. Young; Holly Coleman; Christina Sison; Nisc Comparative Sequencing Program; Rebecca A. Weingarten; Anna F. Lau; John P. Dekker; Tara N. Palmore; Karen M. Frank; Julia A. Segre

ABSTRACT Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli. Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae. Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists’ actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. IMPORTANCE In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae. Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care. In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae. Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care.


Mbio | 2016

Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

Yu-Chih Tsai; Sean Conlan; Clayton Deming; Nisc Comparative Sequencing Program; Julia A. Segre; Heidi H. Kong; Jonas Korlach; Julia Oh

ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. IMPORTANCE The species comprising a microbial community are often difficult to deconvolute due to technical limitations inherent to most short-read sequencing technologies. Here, we leverage new advances in sequencing technology, single-molecule sequencing, to significantly improve reconstruction of a complex human skin microbial community. With this long-read technology, we were able to reconstruct and annotate a closed, high-quality genome of a previously uncharacterized skin species. We demonstrate that hybrid approaches with short-read technology are sufficiently powerful to reconstruct even single-nucleotide polymorphism level variation of species in this a community. The species comprising a microbial community are often difficult to deconvolute due to technical limitations inherent to most short-read sequencing technologies. Here, we leverage new advances in sequencing technology, single-molecule sequencing, to significantly improve reconstruction of a complex human skin microbial community. With this long-read technology, we were able to reconstruct and annotate a closed, high-quality genome of a previously uncharacterized skin species. We demonstrate that hybrid approaches with short-read technology are sufficiently powerful to reconstruct even single-nucleotide polymorphism level variation of species in this a community.


Genome Announcements | 2014

Complete Genome Sequence of a Klebsiella pneumoniae Isolate with Chromosomally Encoded Carbapenem Resistance and Colibactin Synthesis Loci.

Sean Conlan; Clayton Deming; Yu-Chih Tsai; Anna F. Lau; John P. Dekker; Jonas Korlach; Julia A. Segre

ABSTRACT Klebsiella pneumoniae is an important nosocomial pathogen, and multidrug-resistant strains have become a worldwide concern. Here, we report the complete genome of a K. pneumoniae isolate with chromosomally integrated blaKPC genes and a colibactin synthesis locus.

Collaboration


Dive into the Clayton Deming's collaboration.

Top Co-Authors

Avatar

Sean Conlan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julia A. Segre

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Giorgio Trinchieri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amiran Dzutsev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Heidi H. Kong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julia Oh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mariam Quiñones

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Valm

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alice C. Young

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge