Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Oh is active.

Publication


Featured researches published by Julia Oh.


Genome Research | 2012

Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis

Heidi H. Kong; Julia Oh; Clay Deming; Sean Conlan; Elizabeth A. Grice; Melony A. Beatson; Effie Nomicos; Eric C. Polley; Hirsh D. Komarow; Nisc Comparative Sequence Program; Patrick R. Murray; Maria L. Turner; Julia A. Segre

Atopic dermatitis (AD) has long been associated with Staphylococcus aureus skin colonization or infection and is typically managed with regimens that include antimicrobial therapies. However, the role of microbial communities in the pathogenesis of AD is incompletely characterized. To assess the relationship between skin microbiota and disease progression, 16S ribosomal RNA bacterial gene sequencing was performed on DNA obtained directly from serial skin sampling of children with AD. The composition of bacterial communities was analyzed during AD disease states to identify characteristics associated with AD flares and improvement post-treatment. We found that microbial community structures at sites of disease predilection were dramatically different in AD patients compared with controls. Microbial diversity during AD flares was dependent on the presence or absence of recent AD treatments, with even intermittent treatment linked to greater bacterial diversity than no recent treatment. Treatment-associated changes in skin bacterial diversity suggest that AD treatments diversify skin bacteria preceding improvements in disease activity. In AD, the proportion of Staphylococcus sequences, particularly S. aureus, was greater during disease flares than at baseline or post-treatment, and correlated with worsened disease severity. Representation of the skin commensal S. epidermidis also significantly increased during flares. Increases in Streptococcus, Propionibacterium, and Corynebacterium species were observed following therapy. These findings reveal linkages between microbial communities and inflammatory diseases such as AD, and demonstrate that as compared with culture-based studies, higher resolution examination of microbiota associated with human disease provides novel insights into global shifts of bacteria relevant to disease progression and treatment.


Nature | 2013

Topographic diversity of fungal and bacterial communities in human skin

Keisha Findley; Julia Oh; Joy Y Yang; Sean Conlan; Clayton Deming; Jennifer A. Meyer; Deborah Schoenfeld; Effie Nomicos; Morgan Park; Heidi H. Kong; Julia A. Segre

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites—plantar heel, toenail and toe web—showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis.


Nature | 2014

Biogeography and individuality shape function in the human skin metagenome

Julia Oh; Allyson L. Byrd; Clay Deming; Sean Conlan; Nisc Comparative Sequencing Program; Heidi H. Kong; Julia A. Segre

The varied topography of human skin offers a unique opportunity to study how the body’s microenvironments influence the functional and taxonomic composition of microbial communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi that colonize distinct skin niches. Here metagenomic analyses of diverse body sites in healthy humans demonstrate that local biogeography and strong individuality define the skin microbiome. We developed a relational analysis of bacterial, fungal and viral communities, which showed not only site specificity but also individual signatures. We further identified strain-level variation of dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the uncharacterized metagenome through the development of a multi-kingdom gene catalogue, which was used to uncover genetic signatures of species lacking reference genomes. This work is foundational for human disease studies investigating inter-kingdom interactions, metabolic changes and strain tracking, and defines the dual influence of biogeography and individuality on microbial composition and function.


Genome Medicine | 2012

Shifts in human skin and nares microbiota of healthy children and adults

Julia Oh; Sean Conlan; Eric C. Polley; Julia A. Segre; Heidi H. Kong

BackgroundCharacterization of the topographical and temporal diversity of the microbial collective (microbiome) hosted by healthy human skin established a reference for studying disease-causing microbiomes. Physiologic changes occur in the skin as humans mature from infancy to adulthood. Thus, characterizations of adult microbiomes might have limitations when considering pediatric disorders such as atopic dermatitis (AD) or issues such as sites of microbial carriage. The objective of this study was to determine if microbial communities at several body sites in children differed significantly from adults.MethodsUsing 16S-rRNA gene sequencing technology, we characterized and compared the bacterial communities of four body sites in relation to Tanner stage of human development. Body sites sampled included skin sites characteristically involved in AD (antecubital/popliteal fossae), a control skin site (volar forearm), and the nares. Twenty-eight healthy individuals aged from 2 to 40 years were evaluated at the outpatient dermatology clinic in the National Institutes of Healths Clinical Center. Exclusion criteria included the use of systemic antibiotics within 6 months, current/prior chronic skin disorders, asthma, allergic rhinitis, or other chronic medical conditions.ResultsBacterial communities in the nares of children (Tanner developmental stage 1) differed strikingly from adults (Tanner developmental stage 5). Firmicutes (Streptococcaceae), Bacteroidetes, and Proteobacteria (β, γ) were overrepresented in Tanner 1 compared to Tanner 5 individuals, where Corynebacteriaceae and Propionibacteriaceae predominated. While bacterial communities were significantly different between the two groups in all sites, the most marked microbial shifts were observed in the nares, a site that can harbor pathogenic species, including Staphylococcusaureus and Streptococcus pneumonia.ConclusionsSignificant shifts in the microbiota associated with progressive sexual maturation as measured by Tanner staging suggest that puberty-dependent shifts in the skin and nares microbiomes may have significant implications regarding prevention and treatment of pediatric disorders involving microbial pathogens and colonization.


Genome Research | 2013

The altered landscape of the human skin microbiome in patients with primary immunodeficiencies

Julia Oh; Alexandra F. Freeman; Nisc Comparative Sequencing Program; Morgan Park; Robert A. Sokolic; Fabio Candotti; Steven M. Holland; Julia A. Segre; Heidi H. Kong

While landmark studies have shown that microbiota activate and educate host immunity, how immune systems shape microbiomes and contribute to disease is incompletely characterized. Primary immunodeficiency (PID) patients suffer recurrent microbial infections, providing a unique opportunity to address this issue. To investigate the potential influence of host immunity on the skin microbiome, we examined skin microbiomes in patients with rare monogenic PIDs: hyper-IgE (STAT3-deficient), Wiskott-Aldrich, and dedicator of cytokinesis 8 syndromes. While specific immunologic defects differ, a shared hallmark is atopic dermatitis (AD)-like eczema. We compared bacterial and fungal skin microbiomes (41 PID, 13 AD, 49 healthy controls) at four clinically relevant sites representing the major skin microenvironments. PID skin displayed increased ecological permissiveness with altered population structures, decreased site specificity and temporal stability, and colonization with microbial species not observed in controls, including Clostridium species and Serratia marcescens. Elevated fungal diversity and increased representation of opportunistic fungi (Candida, Aspergillus) supported increased PID skin permissiveness, suggesting that skin may serve as a reservoir for the recurrent fungal infections observed in these patients. The overarching theme of increased ecological permissiveness in PID skin was counterbalanced by the maintenance of a phylum barrier in which colonization remained restricted to typical human-associated phyla. Clinical parameters, including markers of disease severity, were positively correlated with prevalence of Staphylococcus, Corynebacterium, and other less abundant taxa. This study examines differences in microbial colonization and community stability in PID skin and informs our understanding of host-microbiome interactions, suggesting a bidirectional dialogue between skin commensals and the host organism.


Mbio | 2016

Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

Yu-Chih Tsai; Sean Conlan; Clayton Deming; Nisc Comparative Sequencing Program; Julia A. Segre; Heidi H. Kong; Jonas Korlach; Julia Oh

ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. IMPORTANCE The species comprising a microbial community are often difficult to deconvolute due to technical limitations inherent to most short-read sequencing technologies. Here, we leverage new advances in sequencing technology, single-molecule sequencing, to significantly improve reconstruction of a complex human skin microbial community. With this long-read technology, we were able to reconstruct and annotate a closed, high-quality genome of a previously uncharacterized skin species. We demonstrate that hybrid approaches with short-read technology are sufficiently powerful to reconstruct even single-nucleotide polymorphism level variation of species in this a community. The species comprising a microbial community are often difficult to deconvolute due to technical limitations inherent to most short-read sequencing technologies. Here, we leverage new advances in sequencing technology, single-molecule sequencing, to significantly improve reconstruction of a complex human skin microbial community. With this long-read technology, we were able to reconstruct and annotate a closed, high-quality genome of a previously uncharacterized skin species. We demonstrate that hybrid approaches with short-read technology are sufficiently powerful to reconstruct even single-nucleotide polymorphism level variation of species in this a community.


bioRxiv | 2018

Microbiome-TP53 Gene Interaction in Human Lung Cancer

K. Leigh Greathouse; James R White; Ashley J. Vargas; Valery Bliskovsky; Jessica Beck; Natalia von Muhlinen; Eric C. Polley; Elise D. Bowman; Mohammed A. Khan; Ana I. Robles; Tomer Cooks; Bríd M. Ryan; Amiran Dzutsev; Giorgio Trinchieri; Marbin Pineda; Sven Bilke; Paul S. Meltzer; Alexis N. Hokenstad; Tricia M. Stickrod; Marina Walther-Antonio; Joshua P. Earl; Joshua Chang Mell; Jaroslaw Krol; Sergey Balashov; Archana S. Bhat; Garth D. Ehrlich; Alex Valm; Clayton Deming; Sean Conlan; Julia Oh

Background Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesized that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from controls (n=33) and cancer cases (n=143), we conducted 16S rRNA bacterial gene sequencing, with RNA-seq data from lung cancer cases in The Cancer Genome Atlas (n=1112) serving as the validation cohort. Results Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma (SCC) specifically, a separate group of taxa were identified, in which Acidovorax was enriched in smokers (P =0.0013). Acidovorax temporans was identified by fluorescent in situ hybridization within tumor sections, and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibited higher abundance among the subset of SCC cases with TP53 mutations, an association not seen in adenocarcinomas (AD). Conclusions The results of this comprehensive study show both a microbiome-gene and microbiome-exposure interactions in SCC lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can damage epithelial function, have a unique bacterial consortia which is higher in relative abundance in smoking-associated SCC. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection.


Genome Biology | 2018

Interaction between the microbiome and TP53 in human lung cancer

K. Leigh Greathouse; James R. White; Ashely J. Vargas; Valery Bliskovsky; Jessica Beck; Natalia von Muhlinen; Eric C. Polley; Elise D. Bowman; Mohammed A. Khan; Ana I. Robles; Tomer Cooks; Bríd M. Ryan; Noah Padgett; Amiran Dzutsev; Giorgio Trinchieri; Marbin Pineda; Sven Bilke; Paul S. Meltzer; Alexis N. Hokenstad; Tricia M. Stickrod; Marina Walther-Antonio; Joshua P. Earl; Joshua Chang Mell; Jaroslaw Krol; Sergey Balashov; Archana S. Bhat; Garth D. Ehrlich; Alex Valm; Clayton Deming; Sean Conlan

BackgroundLung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort.ResultsOverall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas.ConclusionsThe results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection.


Cancer Research | 2017

Abstract 4925: Microbiome-TP53 gene interaction in human lung cancer

Leigh Greathouse; James R. White; Valery Bliskovsky; Ashley J. Vargas; Eric C. Polley; Elise D. Bowman; Mohammed A. Khan; Ana I. Robles; Bríd M. Ryan; Amiran Dzutsev; Giorgio Trinchieri; Marbin Pineda; Sven Bilke; Paul S. Meltzer; Marina Walther-Antonio; Garth D. Ehrlich; Joshua Chang Mell; Joshua P. Earl; Sergey Balashov; Archana S. Bhat; Alex Valm; Clayton Deming; Sean Conlan; Julia Oh; Julie Segre; Curtis C. Harris

Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier function and increases susceptibility to infections. Herein, we hypothesized that somatic mutations together with cigarette smoke create a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from controls (n=33) or cancer cases (n=143), we conducted 16S rRNA gene sequencing (MiSeq), with RNA-seq data from lung cancer cases in The Cancer Genome Atlas (n=1112) serving as the validation cohort. We demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue, indicating a shift in the overall microbial community in lung cancer patients as compared to those without cancer. Lung cancer cases were classified by the relative abundance of two taxa, Variovorax and Streptococcus, with an increase in Variovorax abundance in tumors as compared to non-tumor adjacent paired lung tissue (FDR corrected P=0.013). The species of Variovorax was identified histologically, and also by two additional 16S rRNA strategies (Resphera Insight analysis and PacBio sequencing). A group of taxa were associated with squamous cell carcinoma (SCC), of which Acidovorax were enriched in smokers (P =0.0013). Further, these taxa, including Acidovorax, exhibited higher abundance among the subset of SCC cases with TP53 mutations, an association not seen in adenocarcinomas (AD). Therefore, we observed a microbiome-gene and a microbiome-exposure interaction in SCC lung cancer tissue. Together, these results open the door for future biomarker research that could be used to improve screening and direct mechanistic studies of lung cancer therapy. Citation Format: Leigh Greathouse, James White, Valery Bliskovsky, Ashley Vargas, Eric Polley, Elise Bowman, Mohammed Khan, Ana Robles, Brid Ryan, Amiran Dzutsev, Giorgio Trinchieri, Marbin Pineda, Sven Bilke, Paul Meltzer, Marina Walther-Antonio, Garth Ehrlich, Joshua Mell, Joshua Earl, Sergey Balashov, Archana Bhat, Alex Valm, Clayton Deming, Sean Conlan, Julia Oh, Julie Segre, Curtis Harris. Microbiome-TP53 gene interaction in human lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4925. doi:10.1158/1538-7445.AM2017-4925


Nature | 2012

Genomics: Resident risks.

Julia Oh; Julia A. Segre

An innovative method for probing the genomes of the vast community of microorganisms that inhabit the human gut provides an alternative approach to identifying risk factors for type 2 diabetes. See Letter p.55

Collaboration


Dive into the Julia Oh's collaboration.

Top Co-Authors

Avatar

Julia A. Segre

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sean Conlan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Heidi H. Kong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Clayton Deming

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eric C. Polley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alex Valm

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amiran Dzutsev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ana I. Robles

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bríd M. Ryan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge