Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin T. Dolphin is active.

Publication


Featured researches published by Colin T. Dolphin.


Journal of Neurochemistry | 2002

Distribution of mRNAs Encoding the Peroxisome Proliferator-Activated Receptor α, β, and γ and the Retinoid X Receptor α, β, and γ in Rat Central Nervous System

Tim E. Cullingford; Kishore K. Bhakoo; S Peuchen; Colin T. Dolphin; Ritesh Patel; John B. Clark

Abstract: We report the isolation, by RT‐PCR, of partial cDNAs encoding the rat peroxisome proliferator‐activated receptor (PPAR) isoforms PPARα, PPARβ, and PPARγ and the rat retinoid X receptor (RXR) isoforms RXRα, RXRβ, and RXRγ. These cDNAs were used to generate antisense RNA probes to permit analysis, by the highly sensitive and discriminatory RNase protection assay, of the corresponding mRNAs in rat brain regions during development. PPARα, PPARβ, RXRα, and RXRβ mRNAs are ubiquitously present in different brain regions during development, PPARγ mRNA is essentially undetectable, and RXRγ mRNA is principally localised to cortex. We demonstrate, for the first time, the presence of PPAR and RXR mRNAs in primary cultures of neonatal meningeal fibroblasts, cerebellar granule neurons (CGNs), and cortical and cerebellar astrocytes and in primary cultures of adult cortical astrocytes. PPARα, PPARβ, RXRα, and RXRβ mRNAs are present in all cell types, albeit that PPARα and RXRα mRNAs are at levels near the limit of detection in CGNs. PPARγ mRNA is expressed at low levels in most cell types but is present at levels similar to those of PPARα mRNA in adult astrocytes. RXRγ mRNA is present either at low levels, or below the level of detection of the assay, for all cell types studied.


Journal of Biological Chemistry | 1998

The Flavin-containing Monooxygenase 2 Gene (FMO2) of Humans, but Not of Other Primates, Encodes a Truncated, Nonfunctional Protein

Colin T. Dolphin; Daniel J. Beckett; Azara Janmohamed; Timothy E. Cullingford; Robert L. Smith; Elizabeth A. Shephard; Ian R. Phillips

Flavin-containing monooxygenases (FMOs) are NADPH-dependent flavoenzymes that catalyze the oxidation of heteroatom centers in numerous drugs and xenobiotics. FMO2, or “pulmonary” FMO, one of five forms of the enzyme identified in mammals, is expressed predominantly in lung and differs from other FMOs in that it can catalyze the N-oxidation of certain primary alkylamines. We describe here the isolation and characterization of cDNAs for human FMO2. Analysis of the sequence of the cDNAs and of a section of the corresponding gene revealed that the major FMO2 allele of humans encodes a polypeptide that, compared with the orthologous protein of other mammals, lacks 64 amino acid residues from its C terminus. Heterologous expression of the cDNA revealed that the truncated polypeptide was catalytically inactive. The nonsense mutation that gave rise to the truncated polypeptide, a C → T transition in codon 472, is not present in theFMO2 gene of closely related primates, including gorilla and chimpanzee, and must therefore have arisen in the human lineage after the divergence of the Homo and Pan clades. Possible mechanisms for the fixation of the mutation in the human population and the potential significance of the loss of functional FMO2 in humans are discussed.


Biochemical Pharmacology | 2001

Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450

Azara Janmohamed; Colin T. Dolphin; Ian R. Phillips; Elizabeth A. Shephard

The expression, in adult human skin, of genes encoding flavin-containing monooxygenases (FMOs) 1, 3, 4, and 5 and cytochromes P450 (CYPs) 2A6, 2B6, and 3A4 was determined by RNase protection. Each FMO and CYP exhibits inter-individual variation in expression in this organ. Of the individuals analysed, all contained CYP2B6 mRNA in their skin, 90% contained FMO5 mRNA and about half contained mRNAs encoding FMOs 1, 3, and 4, and CYPs 2A6 and 3A4. The amount of each of the FMO and CYP mRNAs in skin is much lower than in the organ in which it is most highly expressed, namely the kidney (for FMO1) and the liver (for the others). In contrast to the latter organs, in the skin FMO mRNAs are present in amounts similar to, or greater than, CYP mRNAs. Only the mRNA encoding CYP2B6 decreased in abundance in skin with increasing age of the individual. All of the mRNAs were substantially less abundant in cultures of keratinocytes than in samples of skin from which the cells were derived. In contrast, an immortalized human keratinocyte cell line, HaCaT, expressed FMO3, FMO5, and CYP2B6 mRNAs in amounts that fall within the range detected in the whole skin samples analysed. FMO1, CYP2A6, and CYP3A4 mRNAs were not detected in HaCaT cells, whereas FMO4 expression was markedly increased in this cell line compared to whole skin. In situ hybridization showed that the expression of each of the FMOs and CYPs analysed was localized to the epidermis, sebaceous glands and hair follicles.


BMC Biotechnology | 2013

A simplified counter-selection recombineering protocol for creating fluorescent protein reporter constructs directly from C. elegans fosmid genomic clones

Nisha Hirani; Marcel Westenberg; Minaxi S Gami; Paul Davis; Ian A. Hope; Colin T. Dolphin

BackgroundRecombineering is a genetic engineering tool that enables facile modification of large episomal clones, e.g. BACs, fosmids. We have previously adapted this technology to generate, directly from fosmid-based genomic clones, fusion gene reporter constructs designed to investigate gene expression patterns in C. elegans. In our adaptation a rpsL-tet(A) positive/negative-selection cassette (RT-cassette) is first inserted and then, under negative selection, seamlessly replaced with the desired sequence. We report here on the generation and application of a resource comprising two sets of constructs designed to facilitate this particular recombineering approach.ResultsTwo complementary sets of constructs were generated. The first contains different fluorescent protein reporter coding sequences and derivatives while the second set of constructs, based in the copy-number inducible vector pCC1Fos, provide a resource designed to simplify RT-cassette-based recombineering. These latter constructs are used in pairs the first member of which provides a template for PCR-amplification of an RT-cassette while the second provides, as an excised restriction fragment, the desired fluorescent protein reporter sequence. As the RT-cassette is flanked by approximately 200 bp from the ends of the reporter sequence the subsequent negative selection replacement step is highly efficient. Furthermore, use of a restriction fragment minimizes artefacts negating the need for final clone sequencing. Utilizing this resource we generated single-, double- and triple-tagged fosmid-based reporters to investigate expression patterns of three C. elegans genes located on a single genomic clone.ConclusionsWe describe the generation and application of a resource designed to facilitate counter-selection recombineering of fosmid-based C. elegans genomic clones. By choosing the appropriate pair of ‘insertion’ and ‘replacement’ constructs recombineered products, devoid of artefacts, are generated at high efficiency. Gene expression patterns for three genes located on the same genomic clone were investigated via a set of fosmid-based reporter constructs generated with the modified protocol.


Nucleic Acids Research | 2006

Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones

Colin T. Dolphin; Ian A. Hope

By determining spatial-temporal expression patterns, reporter constructs provide significant insights into gene function. Although additionally providing information on subcellular distribution, translational reporters, where the reporter is fused to the gene coding sequence, are used less frequently than simpler constructs containing only putative promoter sequences. Because these latter constructs may not contain all necessary regulatory elements, resulting expression patterns must be interpreted cautiously. To ensure inclusion of all such elements and provide details of subcellular localization, construction of translational reporters would, preferably, utilize genomic clones, containing the complete locus plus flanking regions and permit seamless insertion of the reporter anywhere within the gene. We have developed such a method based upon λ Red-mediated recombineering coupled to a robust two-step counter-selection protocol. We have inserted either gfp or cfp precisely at the C-termini of three Caenorhabditis elegans target genes, each located within different fosmid clones, and examined previously with conventional reporter approaches. Resulting transgenic lines revealed reporter expression consistent with previously published data for the tagged genes and also provided additional information including subcellular distributions. This simple and straightforward method generates reporters highly likely to recapitulate endogenous gene expression and thus represents an important addition to the functional genomics toolbox.


Pharmacogenetics | 2000

Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FMO3) gene in patients with fish-odour syndrome

Colin T. Dolphin; Azara Janmohamed; Robert L. Smith; Elizabeth A. Shephard; Ian R. Phillips

Fish-odour syndrome is a highly unpleasant disorder of hepatic trimethylamine (TMA) metabolism characterized by a body odour reminiscent of rotting fish, due to excessive excretion of the malodorous free amine. Although fish-odour syndrome may exhibit as sequelae with other conditions (e.g. liver dysfunction), many patients exhibit an inherited, more persistent form of the disease. Ordinarily, dietary-derived TMA is oxidized to the nonodorous N-oxide by hepatic flavin-containing monooxygenase 3 (FMO3). Our previous demonstration that a mutation, P153L (C to T), in the FMO3 gene segregated with the disorder and inactivated the enzyme confirmed that defects in FMO3 underlie the inherited form of fish-odour syndrome. We have investigated the genetic basis of the disorder in two further affected pedigrees and report that the three propositi are all compound heterozygotes for causative mutations of FMO3. Two of these individuals possess the P153L (C to T) mutation and a novel mutation, N61S (A to G). The third is heterozygous for novel, M4341 (G to A), and previously reported, R492W (C to T), mutations. Functional characterization of the S61, 1434 and W492 variants, via baculovirus-mediated expression in insect cells, confirmed that all three mutations either abolished, or severely attenuated, the capacity of the enzyme to catalyse TMA N-oxidation. Although 1434 and W492 were also incapable of catalysing the S-oxidation of methimazole, S61 was fully active with this sulphur-containing substrate. Since an asparagine is conserved at the equivalent position to N61 of FMO3 in mammalian, yeast and Caenorhabditis elegans FMOs, the characterization of the naturally occurring N61S (A to G) mutation may have identified this asparagine as playing a critical role specifically in FMO-catalysed N-oxidation.


Neuropharmacology | 2002

The peroxisome proliferator-activated receptor α-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain

Tim E. Cullingford; Colin T. Dolphin; Hitoshi Sato

Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.


Drug Metabolism Reviews | 2002

GENETIC POLYMORPHISMS OF FLAVIN-CONTAINING MONOOXYGENASE (FMO)

Sharon K. Krueger; David Williams; Mei-Fei Yueh; Sarah R. Martin; Ronald N. Hines; Judy L. Raucy; Colin T. Dolphin; Elizabeth A. Shephard; Ian R. Phillips

Mammalian flavin-containing monooxygenase (FMO) exists as six gene families and metabolizes a plethora of drugs and xenobiotics. The major FMO in adult human liver, FMO3, is responsible for trimethylamine (TMA) N-oxygenation. A number of FMO3 mutant alleles have been described and associated with a disease termed trimethylaminuria (TMAU). The TMAU patient excretes large amounts of TMA in urine and sweat. A more recent ethnically related polymorphism in expression of the major FMO in lung, FMO2, has been described. All Caucasians and Asians genotyped to date are homozygous for a CAG→TAG amber mutation resulting in a premature stop codon and a nonfunctional protein truncated at AA 472 (wildtype FMO2 is 535 AA). This allele has been designated hFMO2*2A. Twenty-six percent of individuals of African descent and 5% of Hispanics genotyped to date carry at least one allele coding for full-length FMO2 (hFMO2*1 allele). Preliminary evidence indicates that FMO2.1 is very active toward the S-oxygenation of low MW thioureas, including the lung toxicant ethylene thiourea. Polymorphic expression of functional FMO2 in the individuals of African and Hispanic descent may markedly influence drug metabolism and/or xenobiotic toxicity in the lung. Supported by HL38650.


Pharmacogenetics | 2000

A novel mutation in the flavin-containing monooxygenase 3 gene, FMO3, that causes fish-odour syndrome: activity of the mutant enzyme assessed by proton NMR spectroscopy.

Helena C. Murphy; Colin T. Dolphin; Azara Janmohamed; Heather C. Holmes; Helen Michelakakis; Elizabeth A. Shephard; Ronald A. Chalmers; Ian R. Phillips; Richard A. Iles

We have previously shown that primary trimethylaminuria, or fish-odour syndrome, is caused by an inherited defect in the flavin-containing monooxygenase 3 (FMO3) catalysed N-oxidation of the dietary-derived malodorous amine, trimethylamine (TMA). We now report a novel causative mutation for the disorder identified in a young girl diagnosed by proton nuclear magnetic resonance (NMR) spectroscopy of her urine. Sequence analysis of genomic DNA amplified from the patient revealed that she was homozygous for a T to C missense mutation in exon 3 of the FMO3 gene. The mutation changes an ATG triplet, encoding methionine, at codon 82 to an ACG triplet, encoding threonine. A polymerase chain reaction/restriction enzyme-based assay was devised to genotype individuals for the FMO3Thr82 allele. Wild-type and mutant FMO3, heterologously expressed in a baculovirus-insect cell system, were assayed by ultraviolet spectrophotometry and NMR spectroscopy for their ability to catalyse the N-oxidation of TMA. The latter technique has the advantage of enabling the simultaneous, direct and semi-continuous measurement of both of the products, TMA N-oxide and NADP, and of one of the reactants, NADPH. Results obtained from both techniques demonstrate that the Met82Thr mutation abolishes the catalytic activity of the enzyme and thus represents the genetic basis of the disorder in this individual. The combination of NMR spectroscopy with gene sequence and expression technology provides a powerful means of determining genotype-phenotype relationships in trimethylaminuria.


Biochemical Pharmacology | 1988

The role of intestinal microflora in the formation of the methylthio adduct metabolites of paracetamol: Studies in neomycin-pretreated and germ-free mice

Momir Mikov; John Caldwell; Colin T. Dolphin; Robert L. Smith

The contribution of the gastrointestinal microflora to the formation of methylthio adducts from paracetamol has been studied by comparing the fate of this drug in conventional mice with that in germ-free and neomycin-treated animals. In both germ-free and neomycin-treated mice there was a highly significant reduction in the urinary excretion of 3-methylthioparacetamol, its glucuronic acid and sulfate conjugates and its sulfoxide, with no other systemic alteration to the overall fate of the drug. These data are consistent with the gut flora playing a major role in the C-S cleavage of paracetamol-3-cysteine, thereby reducing the excretion of the array of methylthio adducts subsequently formed by tissue enzymes from 3-thioparacetamol, the putative product of the C-S cleavage.

Collaboration


Dive into the Colin T. Dolphin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian R. Phillips

St Bartholomew's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Caldwell

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

S. Povey

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge