Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colleen M. Iversen is active.

Publication


Featured researches published by Colleen M. Iversen.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2

Adrien C. Finzi; Richard J. Norby; Carlo Calfapietra; Anne Gallet-Budynek; B. Gielen; William E. Holmes; Marcel R. Hoosbeek; Colleen M. Iversen; Robert B. Jackson; Mark E. Kubiske; Joanne Ledford; Marion Liberloo; Ram Oren; Andrea Polle; Seth G. Pritchard; Donald R. Zak; William H. Schlesinger; R. Ceulemans

Forest ecosystems are important sinks for rising concentrations of atmospheric CO2. In previous research, we showed that net primary production (NPP) increased by 23 ± 2% when four experimental forests were grown under atmospheric concentrations of CO2 predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of increased N uptake from the soil and more efficient use of the N already assimilated by trees is necessary to sustain the high rates of forest NPP under free-air CO2 enrichment (FACE). In this study, experimental evidence demonstrates that the uptake of N increased under elevated CO2 at the Rhinelander, Duke, and Oak Ridge National Laboratory FACE sites, yet fertilization studies at the Duke and Oak Ridge National Laboratory FACE sites showed that tree growth and forest NPP were strongly limited by N availability. By contrast, nitrogen-use efficiency increased under elevated CO2 at the POP-EUROFACE site, where fertilization studies showed that N was not limiting to tree growth. Some combination of increasing fine root production, increased rates of soil organic matter decomposition, and increased allocation of carbon (C) to mycorrhizal fungi is likely to account for greater N uptake under elevated CO2. Regardless of the specific mechanism, this analysis shows that the larger quantities of C entering the below-ground system under elevated CO2 result in greater N uptake, even in N-limited ecosystems. Biogeochemical models must be reformulated to allow C transfers below ground that result in additional N uptake under elevated CO2.


New Phytologist | 2015

Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

M. Luke McCormack; Ian A. Dickie; David M. Eissenstat; Timothy J. Fahey; Christopher W. Fernandez; Dali Guo; Helja Sisko Helmisaari; Erik A. Hobbie; Colleen M. Iversen; Robert B. Jackson; Jaana Leppälammi-Kujansuu; Richard J. Norby; Richard P. Phillips; Kurt S. Pregitzer; Seth G. Pritchard; Boris Rewald; Marcin Zadworny

Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.


New Phytologist | 2014

Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies

Soenke Zaehle; Belinda E. Medlyn; Martin G. De Kauwe; Anthony P. Walker; Michael C. Dietze; Thomas Hickler; Yiqi Luo; Ying-Ping Wang; Bassil El-Masri; Peter E. Thornton; Atul K. Jain; Shusen Wang; David Wårlind; Ensheng Weng; William J. Parton; Colleen M. Iversen; Anne Gallet-Budynek; Heather R. McCarthy; Adrien C. Finzi; Paul J. Hanson; I. Colin Prentice; Ram Oren; Richard J. Norby

We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.


New Phytologist | 2010

Digging deeper: fine‐root responses to rising atmospheric CO2 concentration in forested ecosystems

Colleen M. Iversen

Experimental evidence from a diverse set of forested ecosystems indicates that CO2 enrichment may lead to deeper rooting distributions. While the causes of greater root production at deeper soil depths under elevated CO2 concentration ([CO2]) require further investigation, altered rooting distributions are expected to affect important ecosystem processes. The depth at which fine roots are produced may influence root chemistry, physiological function, and mycorrhizal infection, leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil processes such as microbial decomposition are slowed at depth in the soil, potentially affecting the rate at which root detritus becomes incorporated into soil organic matter. Deeper rooting distributions under elevated [CO2] provide exciting opportunities to use novel sensors and chemical analyses throughout the soil profile to track the effects of root proliferation on carbon (C) and N cycling. Models do not currently incorporate information on root turnover and C and N cycling at depth in the soil, and modification is necessary to accurately represent processes associated with altered rooting depth distributions. Progress in understanding and modeling the interface between deeper rooting distributions under elevated [CO2] and soil C and N cycling will be critical in projecting the sustainability of forest responses to rising atmospheric [CO2].


New Phytologist | 2008

CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest

Colleen M. Iversen; Joanne Ledford; Richard J. Norby

* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.


Ecology | 2006

Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest

Richard J. Norby; Colleen M. Iversen

The Progressive Nitrogen Limitation (PNL) hypothesis suggests that ecosystems in a CO2-enriched atmosphere will sequester C and N in long-lived biomass and soil organic pools, thereby limiting available N and constraining the continued response of net primary productivity to elevated [CO2]. Here, we present a six-year record of N dynamics of a sweetgum (Liquidambar styraciflua) stand exposed to elevated [CO2] in the free-air CO2 enrichment (FACE) experiment at Oak Ridge, Tennessee, USA. We also evaluate the concept of PNL for this ecosystem from the perspective of N uptake, content, distribution, and turnover, and N-use efficiency. Leaf N content was 11% lower on a leaf mass basis (NM) and 7% lower on a leaf area basis (NA) in CO2-enriched trees. However, there was no effect of [CO2] on total canopy N content. Resorption of N during senescence was not altered by [CO2], so NM of litter, but not total N content, was reduced. The NM of fine roots was not affected, but the total amount of N required for fine-root production increased significantly, reflecting the large stimulation of fine-root production in this stand. Hence, total N requirement of the trees was higher in elevated [CO2], and the increased requirement was met through an increase in N uptake rather than increased retranslocation of stored reserves. Increased N uptake was correlated with increased net primary productivity (NPP). N-use efficiency, however, did not change with CO2 enrichment because increased N productivity was offset by lower mean residence time of N in the trees. None of the measured responses of plant N dynamics in this ecosystem indicated the occurrence of PNL, and the stimulation of NPP by elevated [CO2] was sustained for the first six years of the experiment. Although there are some indications of developing changes in the N economy, the N supply in the soil at this site may be sufficient to meet an increasing demand for available N, especially as the roots of CO2-enriched trees explore deeper in the soil profile.


New Phytologist | 2014

Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites.

Martin G. De Kauwe; Belinda E. Medlyn; Sönke Zaehle; Anthony P. Walker; Michael C. Dietze; Ying Ping Wang; Yiqi Luo; Atul K. Jain; Bassil El-Masri; Thomas Hickler; David Wårlind; Ensheng Weng; William J. Parton; Peter E. Thornton; Shusen Wang; I. Colin Prentice; Shinichi Asao; Benjamin Smith; Heather R. McCarthy; Colleen M. Iversen; Paul J. Hanson; Jeffrey M. Warren; Ram Oren; Richard J. Norby

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


Annals of Botany | 2014

Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems

Stan D. Wullschleger; Howard E. Epstein; Elgene O. Box; Eugénie S. Euskirchen; Santonu Goswami; Colleen M. Iversen; Jens Kattge; Richard J. Norby; Peter M. van Bodegom; Xiaofeng Xu

BACKGROUND Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. SCOPE Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. CONCLUSIONS Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings.


New Phytologist | 2015

The unseen iceberg: plant roots in arctic tundra

Colleen M. Iversen; Victoria L. Sloan; Patrick F. Sullivan; Eugénie S. Euskirchen; A. David McGuire; Richard J. Norby; Anthony P. Walker; Jeffrey M. Warren; Stan D. Wullschleger

Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.


New Phytologist | 2015

Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations

Jeffrey M. Warren; Paul J. Hanson; Colleen M. Iversen; Jitendra Kumar; Anthony P. Walker; Stan D. Wullschleger

There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction.

Collaboration


Dive into the Colleen M. Iversen's collaboration.

Top Co-Authors

Avatar

Richard J. Norby

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey M. Warren

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul J. Hanson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter E. Thornton

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stan D. Wullschleger

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anthony P. Walker

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jitendra Kumar

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge