Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cong-Fei Xu is active.

Publication


Featured researches published by Cong-Fei Xu.


Journal of the American Chemical Society | 2015

Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery.

Chun-Yang Sun; Song Shen; Cong-Fei Xu; Hong-Jun Li; Yang Liu; Zhi-Ting Cao; Xian-Zhu Yang; Jin-Xing Xia; Jun Wang

Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.


Angewandte Chemie | 2016

Facile Generation of Tumor‐pH‐Labile Linkage‐Bridged Block Copolymers for Chemotherapeutic Delivery

Chun-Yang Sun; Yang Liu; Jin-Zhi Du; Zhi-Ting Cao; Cong-Fei Xu; Jun Wang

Successful bench-to-bedside translation of nanomedicine relies heavily on the development of nanocarriers with superior therapeutic efficacy and high biocompatibility. However, the optimal strategy for improving one aspect often conflicts with the other. Herein, we report a tactic of designing tumor-pH-labile linkage-bridged copolymers of clinically validated poly(D,L-lactide) and poly(ethylene glycol) (PEG-Dlink(m)-PDLLA) for safe and effective drug delivery. Upon arriving at the tumor site, PEG-Dlink(m)-PDLLA nanoparticles will lose the PEG layer and increase zeta potential by responding to tumor acidity, which significantly enhances cellular uptake and improves the in vivo tumor inhibition rate to 78.1% in comparison to 47.8% of the non-responsive control. Furthermore, PEG-Dlink(m)-PDLLA nanoparticles show comparable biocompatibility with the clinically used PEG-b-PDLLA micelle. The improved therapeutic efficacy and safety demonstrate great promise for our strategy in future translational studies.


Biomaterials | 2015

Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells.

Rong Sun; Yang Liu; Shi-Yong Li; Song Shen; Xiao-Jiao Du; Cong-Fei Xu; Zhi-Ting Cao; Yan Bao; Yan-Hua Zhu; Yaping Li; Xian-Zhu Yang; Jun Wang

Combination treatment through simultaneous delivery of two or more drugs with nanoparticles has been demonstrated to be an elegant and efficient approach for cancer therapy. Herein, we employ a combination therapy for eliminating both the bulk tumor cells and the rare cancer stem cells (CSCs) that have a high self-renewal capacity and play a critical role in cancer treatment failure. All-trans-retinoic acid (ATRA), a powerful differentiation agent of cancer stem cells and the clinically widely used chemotherapy agent doxorubicin (DOX) are simultaneously encapsulated in the same nanoparticle by a single emulsion method. It is demonstrated that ATRA and DOX simultaneous delivery-based therapy can efficiently deliver the drugs to both non-CSCs and CSCs to differentiate and kill the cancer cells. Differentiation of CSCs into non-CSCs can reduce their self-renewal capacity and increase their sensitivity to chemotherapy; with the combined therapy, a significantly improved anti-cancer effect is demonstrated. Administration of this combinational drug delivery system can markedly augment the enrichment of drugs both in tumor tissues and cancer stem cells, prodigiously enhancing the suppression of tumor growth while reduce the incidence of CSC in a synergistic manner.


Biomaterials | 2016

Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery

Cong-Fei Xu; Hou-Bing Zhang; Chun-Yang Sun; Yang Liu; Song Shen; Xian-Zhu Yang; Yan-Hua Zhu; Jun Wang

The design of ideal nanoparticle delivery systems should be capable of meeting the requirements of several stages of drug delivery, including prolonged circulation, enhanced accumulation and penetration in the tumor, facilitated cellular internalization and rapid release of the active drug in the tumor cells. However, among the current design strategies, meeting the requirements of one stage often conflicts with the other. Herein, a tumor pH-labile linkage-bridged block copolymer of poly(ethylene glycol) with poly(lacide-co-glycolide) (PEG-Dlinkm-PLGA) was used for siRNA delivery to fulfill all aforementioned requirements of these delivery stages. The obtained siRNA-encapsulating PEG-Dlinkm-PLGA nanoparticle gained efficiently prolonged circulation in the blood and preferential accumulation in tumor sites via the PEGylation. Furthermore, the PEG surface layer was detached in response to the tumor acidic microenvironment to facilitate cellular uptake, and the siRNA was rapidly released within tumor cells due to the hydrophobic PLGA layer. Hence, PEG-Dlinkm-PLGA nanoparticles met the requirements of several stages of drug delivery, and resulted in the enhanced therapeutic effect of the nanoparticular delivery systems.


Journal of Hepatology | 2015

Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice

Kele Cui; Guoxiu Yan; Cong-Fei Xu; Yongyan Chen; Jun Wang; Rongbin Zhou; Li Bai; Zhexiong Lian; Haiming Wei; Rui Sun; Zhigang Tian

BACKGROUND & AIMS It was reported that alcohol consumption activated the NLRP3 inflammasome in Kupffer cells, leading to mature interleukin (IL)-1β release in alcoholic liver injury; however, how IL-1β promotes liver injury remains unclear. METHODS We investigated the role of IL-1β in alcoholic steatohepatitis by using a chronic plus single-binge ethanol consumption mouse model. RESULTS Here, liver steatosis was accompanied by notably increased invariant natural killer T (iNKT) cell numbers and activation, and iNKT-deficient Jα18(-/-) mice developed less alcohol-induced steatosis, with reduced liver inflammation and neutrophil infiltration. Kupffer cells and IL-1β were required for the hepatic iNKT accumulation, as either blocking IL-1β signaling with a recombinant IL-1 receptor antagonist (IL-1Ra), depleting Kupffer cells by clodronate liposomes, or specifically silencing IL-1β in Kupffer cells by nanoparticle-encapsulated siRNA, resulted in inhibited hepatic iNKT cell accumulation and activation, as well as amelioration of alcoholic fatty liver. In addition, IL-1β overexpression in hepatocytes was sufficient to compensate for Kupffer cell depletion. Increased gene and protein expression of mature IL-1β correlated with elevated expression of the NLRP3 inflammasome components NLRP3, ASC, and cleaved caspase-1 in Kupffer cells from ethanol-exposed wild-type mice. NLRP3 deficiency led to the attenuation of alcoholic steatosis, similarly as Kupffer cell depletion, almost without hepatic NKT cells. CONCLUSIONS After alcohol-exposure Kupffer cell-derived IL-1β triggered by NLRP3 activation, recruits and activates hepatic iNKT cells, subsequently promoting liver inflammation and neutrophil infiltration, and inducing alcoholic liver injury.


Journal of Controlled Release | 2016

Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation.

Shi-Yong Li; Yang Liu; Cong-Fei Xu; Song Shen; Rong Sun; Xiao-Jiao Du; Jin-Xing Xia; Yan-Hua Zhu; Jun Wang

The core purpose of cancer immunotherapy is the sustained activation and expansion of the tumor specific T cells, especially tumor-infiltrating cytotoxic T lymphocytes (CTLs). Currently, one of the main foci of immunotherapy involving nano-sized carriers is on cancer vaccines and the role of professional antigen presenting cells, such as dendritic cells (DCs) and other phagocytic immune cells. Besides the idea that cancer vaccines promote T cell immune responses, targeting immune inhibitory pathways with nanoparticle delivered regulatory agents such as small interfering RNA (siRNA) to the difficultly-transfected tumor-infiltrating T cells may provide more information on the utility of nanoparticle-mediated cancer immunotherapy. In this study, we constructed nanoparticles to deliver cytotoxic T lymphocyte-associated molecule-4 (CTLA-4)-siRNA (NPsiCTLA-4) and showed the ability of this siRNA delivery system to enter T cells both in vitro and in vivo. Furthermore, T cell activation and proliferation were enhanced after NPsiCTLA-4 treatment in vitro. The ability of direct regulation of T cells of this CTLA-4 delivery system was assessed in a mouse model bearing B16 melanoma. Our results demonstrated that this nanoparticle delivery system was able to deliver CTLA-4-siRNA into both CD4(+) and CD8(+) T cell subsets at tumor sites and significantly increased the percentage of anti-tumor CD8(+) T cells, while it decreased the ratio of inhibitory T regulatory cells (Tregs) among tumor infiltrating lymphocytes (TILs), resulting in augmented activation and anti-tumor immune responses of the tumor-infiltrating T cells. These data support the use of potent nanoparticle-based cancer immunotherapy for melanoma.


Biomaterials | 2015

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy

Cong-Fei Xu; Yang Liu; Song Shen; Yan-Hua Zhu; Jun Wang

Targeting cancer metabolism is emerging as a successful strategy for cancer therapy. However, most of the marketed anti-metabolism drugs in cancer therapy do not distinguish normal cells from cancer cells, leading to severe side effects. In this study, we report an effective strategy for cancer therapy through targeting glucose transporter 3 (GLUT3) with siRNA-based nanomedicine to simultaneously inhibit the self-renewal of glioma stem cells and bulk glioma cells in a glucose restricted tumor micro-environment. We have demonstrated that cationic lipid-assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles can efficiently deliver siRNA into U87MG and U251 glioma stem cells and bulk glioma cells. Nanoparticles carrying specific siRNA targeting GLUT3 (NPsiGLUT3) were able to significantly reduce the expression of GLUT3 in glioma stem cells and bulk glioma cells, while GLUT3 knockdown results in obvious cell metabolism and proliferation inhibition, and further glioma stem cells percentage down-regulation. Moreover, systemic delivery of NPsiGLUT3, via intravenous injection, significantly inhibited tumor growth in a U87MG xenograft model, due to the reduced expression of GLUT3 and down-regulated stemness of glioma cells.


Nature Communications | 2017

CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

Tiantian Tang; Xueting Lang; Cong-Fei Xu; Xiaqiong Wang; Tao Gong; Yanqing Yang; Jun Cui; Li Bai; Jun Wang; Wei Jiang; Rongbin Zhou

The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7–NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.


Nature Communications | 2016

Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish.

Chenglu Xiao; Lu Gao; Yu Hou; Cong-Fei Xu; Nannan Chang; Fang Wang; Keping Hu; Aibin He; Ying Luo; Jun Wang; Jinrong Peng; Fuchou Tang; Xiaojun Zhu; Jing-Wei Xiong

The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(gata4:EGFP) cardiomyocytes, leading to severe cardiac fibrosis and compromised myocardial regeneration. RNA-seq and RNAscope analyses reveal that inhibition of Brg1 increases the expression of cyclin-dependent kinase inhibitors such as cdkn1a and cdkn1c in the myocardium after ventricular resection; and accordingly, myocardial-specific expression of dn-xBrg1 blunts myocardial proliferation and regeneration. Mechanistically, injury-induced Brg1, via its interaction with Dnmt3ab, suppresses the expression of cdkn1c by increasing the methylation level of CpG sites at the cdkn1c promoter. Taken together, our results suggest that Brg1 promotes heart regeneration by repressing cyclin-dependent kinase inhibitors partly through Dnmt3ab-dependent DNA methylation.


ACS Nano | 2018

Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles

Ying-Li Luo; Cong-Fei Xu; Hong-Jun Li; Zhi-Ting Cao; Jing Liu; Ji-Long Wang; Xiao-Jiao Du; Xian-Zhu Yang; Zhen Gu; Jun Wang

The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.

Collaboration


Dive into the Cong-Fei Xu's collaboration.

Top Co-Authors

Avatar

Jun Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Song Shen

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhi-Ting Cao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Ying-Li Luo

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xiao-Jiao Du

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yan-Hua Zhu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Hong-Jun Li

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rong Sun

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xian-Zhu Yang

Hefei University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge