Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan-Hua Zhu is active.

Publication


Featured researches published by Yan-Hua Zhu.


Biomaterials | 2014

Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds

Tian-Meng Sun; Yu-Cai Wang; Feng Wang; Jin-Zhi Du; Cheng-Qiong Mao; Chun-Yang Sun; Rui-Zhi Tang; Yang Liu; Jing Zhu; Yan-Hua Zhu; Xian-Zhu Yang; Jun Wang

Nanoparticle-mediated delivery of chemotherapies has demonstrated enhanced anti-cancer efficacy, mainly through the mechanisms of both passive and active targeting. Herein, we report other than these well-elucidated mechanisms, rationally designed nanoparticles can efficiently deliver drugs to cancer stem cells (CSCs), which in turn contributes significantly to the improved anti-cancer efficacy. We demonstrate that doxorubicin-tethered gold nanoparticles via a poly(ethylene glycol) spacer and an acid-labile hydrazone bond mediate potent doxorubicin delivery to breast CSCs, which reduces their mammosphere formation capacity and their cancer initiation activity, eliciting marked enhancement in tumor growth inhibition in murine models. The drug delivery mediated by the nanoparticles also markedly attenuates tumor growth during off-therapy stage by reducing breast CSCs in tumors, while the therapy with doxorubicin alone conversely evokes an enrichment of breast CSCs. Our findings suggest that with well-designed drug delivery system, the conventional chemotherapeutic agents are promising for cancer stem cell therapy.


Biomaterials | 2015

Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells.

Rong Sun; Yang Liu; Shi-Yong Li; Song Shen; Xiao-Jiao Du; Cong-Fei Xu; Zhi-Ting Cao; Yan Bao; Yan-Hua Zhu; Yaping Li; Xian-Zhu Yang; Jun Wang

Combination treatment through simultaneous delivery of two or more drugs with nanoparticles has been demonstrated to be an elegant and efficient approach for cancer therapy. Herein, we employ a combination therapy for eliminating both the bulk tumor cells and the rare cancer stem cells (CSCs) that have a high self-renewal capacity and play a critical role in cancer treatment failure. All-trans-retinoic acid (ATRA), a powerful differentiation agent of cancer stem cells and the clinically widely used chemotherapy agent doxorubicin (DOX) are simultaneously encapsulated in the same nanoparticle by a single emulsion method. It is demonstrated that ATRA and DOX simultaneous delivery-based therapy can efficiently deliver the drugs to both non-CSCs and CSCs to differentiate and kill the cancer cells. Differentiation of CSCs into non-CSCs can reduce their self-renewal capacity and increase their sensitivity to chemotherapy; with the combined therapy, a significantly improved anti-cancer effect is demonstrated. Administration of this combinational drug delivery system can markedly augment the enrichment of drugs both in tumor tissues and cancer stem cells, prodigiously enhancing the suppression of tumor growth while reduce the incidence of CSC in a synergistic manner.


Biomaterials | 2016

Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery

Cong-Fei Xu; Hou-Bing Zhang; Chun-Yang Sun; Yang Liu; Song Shen; Xian-Zhu Yang; Yan-Hua Zhu; Jun Wang

The design of ideal nanoparticle delivery systems should be capable of meeting the requirements of several stages of drug delivery, including prolonged circulation, enhanced accumulation and penetration in the tumor, facilitated cellular internalization and rapid release of the active drug in the tumor cells. However, among the current design strategies, meeting the requirements of one stage often conflicts with the other. Herein, a tumor pH-labile linkage-bridged block copolymer of poly(ethylene glycol) with poly(lacide-co-glycolide) (PEG-Dlinkm-PLGA) was used for siRNA delivery to fulfill all aforementioned requirements of these delivery stages. The obtained siRNA-encapsulating PEG-Dlinkm-PLGA nanoparticle gained efficiently prolonged circulation in the blood and preferential accumulation in tumor sites via the PEGylation. Furthermore, the PEG surface layer was detached in response to the tumor acidic microenvironment to facilitate cellular uptake, and the siRNA was rapidly released within tumor cells due to the hydrophobic PLGA layer. Hence, PEG-Dlinkm-PLGA nanoparticles met the requirements of several stages of drug delivery, and resulted in the enhanced therapeutic effect of the nanoparticular delivery systems.


Journal of Controlled Release | 2015

Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells

Shi-Yong Li; Rong Sun; Hong-Xia Wang; Song Shen; Yang Liu; Xiao-Jiao Du; Yan-Hua Zhu; Wang Jun

Aberrant DNA hypermethylation is critical in the regulation of renewal and maintenance of cancer stem cells (CSCs), which represent targets for carcinogenic initiation by chemical and environmental agents. The administration of decitabine (DAC), which is a DNA hypermethylation inhibitor, is an attractive approach to enhancing the chemotherapeutic response and overcoming drug resistance by CSCs. In this study, we investigated whether low-dose DAC encapsulated in nanoparticles could be used to sensitize bulk breast cancer cells and CSCs to chemotherapy. In vitro studies revealed that treatment with nanoparticles loaded with low-dose DAC (NPDAC) combined with nanoparticles loaded with doxorubicin (NPDOX) better reduced the proportion of CSCs with high aldehyde dehydrogenase activity (ALDH(hi)) in the mammospheres of MDA-MB-231 cells, and better overcame the drug resistance by ALDH(hi) cells. Subsequently, systemic delivery of NPDAC significantly down-regulated the expression of DNMT1 and DNMT3b in a MB-MDA-231 xenograft murine model and induced increased caspase-9 expression, which contributed to the increased sensitivity of the bulk cancer cells and CSCs to NPDOX treatment. Importantly, the combined treatment of NPDAC and NPDOX resulted in the lowest proportion of ALDH(hi) CSCs and the highest proportion of apoptotic tumor cells, and the best tumor suppressive effects in inhibiting breast cancer growth.


Journal of Controlled Release | 2016

Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation.

Shi-Yong Li; Yang Liu; Cong-Fei Xu; Song Shen; Rong Sun; Xiao-Jiao Du; Jin-Xing Xia; Yan-Hua Zhu; Jun Wang

The core purpose of cancer immunotherapy is the sustained activation and expansion of the tumor specific T cells, especially tumor-infiltrating cytotoxic T lymphocytes (CTLs). Currently, one of the main foci of immunotherapy involving nano-sized carriers is on cancer vaccines and the role of professional antigen presenting cells, such as dendritic cells (DCs) and other phagocytic immune cells. Besides the idea that cancer vaccines promote T cell immune responses, targeting immune inhibitory pathways with nanoparticle delivered regulatory agents such as small interfering RNA (siRNA) to the difficultly-transfected tumor-infiltrating T cells may provide more information on the utility of nanoparticle-mediated cancer immunotherapy. In this study, we constructed nanoparticles to deliver cytotoxic T lymphocyte-associated molecule-4 (CTLA-4)-siRNA (NPsiCTLA-4) and showed the ability of this siRNA delivery system to enter T cells both in vitro and in vivo. Furthermore, T cell activation and proliferation were enhanced after NPsiCTLA-4 treatment in vitro. The ability of direct regulation of T cells of this CTLA-4 delivery system was assessed in a mouse model bearing B16 melanoma. Our results demonstrated that this nanoparticle delivery system was able to deliver CTLA-4-siRNA into both CD4(+) and CD8(+) T cell subsets at tumor sites and significantly increased the percentage of anti-tumor CD8(+) T cells, while it decreased the ratio of inhibitory T regulatory cells (Tregs) among tumor infiltrating lymphocytes (TILs), resulting in augmented activation and anti-tumor immune responses of the tumor-infiltrating T cells. These data support the use of potent nanoparticle-based cancer immunotherapy for melanoma.


Journal of Controlled Release | 2014

Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles.

Yang Liu; Yan-Hua Zhu; Cheng-Qiong Mao; Shuang Dou; Song Shen; Zi-Bin Tan; Jun Wang

There is no effective clinical therapy yet for triple-negative breast cancer (TNBC) without particular human epidermal growth factor receptor-2, estrogen and progesterone receptor expression. In this study, we report a molecularly targeted and synthetic lethality-based siRNA therapy for TNBC treatment, using cationic lipid assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the siRNA carrier. It is demonstrated that only in c-Myc overexpressed TNBC cells, while not in normal mammary epithelial cells, delivery of siRNA targeting cyclin-dependent kinase 1 (CDK1) with the nanoparticle carrier (NPsiCDK1) induces cell viability decreasing and cell apoptosis through RNAi-mediated CDK1 expression inhibition, indicating the synthetic lethality between c-Myc with CDK1 in TNBC cells. Moreover, systemic delivery of NPsiCDK1 is able to suppress tumor growth in mice bearing SUM149 and BT549 xenograft and cause no systemic toxicity or activate the innate immune response, suggesting the therapeutic promise with such nanoparticles carrying siCDK1 for c-Myc overexpressed triple negative breast cancer.


ACS Nano | 2013

Differential anticancer drug delivery with a nanogel sensitive to bacteria-accumulated tumor artificial environment.

Meng-Hua Xiong; Yan Bao; Xiao-Jiao Du; Zi-Bin Tan; Qiu Jiang; Hong-Xia Wang; Yan-Hua Zhu; Jun Wang

Differential anticancer drug delivery that selectively releases a drug within a tumor represents an ideal cancer therapy strategy. Herein, we report differential drug delivery to the tumor through the fabrication of a special bacteria-accumulated tumor environment that responds to bacteria-sensitive triple-layered nanogel (TLN). We demonstrate that the attenuated bacteria SBY1 selectively accumulated in tumors and were rapidly cleared from normal tissues after intravenous administration, leading to a unique bacteria-accumulated tumor environment. Subsequent administrated doxorubicin-loaded TLN (TLND) was thus selectively degraded in the bacteria-accumulated tumor environment after its accumulation in tumors, triggering differential doxorubicin release and selectively killing tumor cells. This concept can be extended and improved by using other factors secreted by bacteria or materials to fabricate a unique tumor environment for differential drug delivery, showing potential applications in drug delivery.


Biomaterials | 2015

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy

Cong-Fei Xu; Yang Liu; Song Shen; Yan-Hua Zhu; Jun Wang

Targeting cancer metabolism is emerging as a successful strategy for cancer therapy. However, most of the marketed anti-metabolism drugs in cancer therapy do not distinguish normal cells from cancer cells, leading to severe side effects. In this study, we report an effective strategy for cancer therapy through targeting glucose transporter 3 (GLUT3) with siRNA-based nanomedicine to simultaneously inhibit the self-renewal of glioma stem cells and bulk glioma cells in a glucose restricted tumor micro-environment. We have demonstrated that cationic lipid-assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles can efficiently deliver siRNA into U87MG and U251 glioma stem cells and bulk glioma cells. Nanoparticles carrying specific siRNA targeting GLUT3 (NPsiGLUT3) were able to significantly reduce the expression of GLUT3 in glioma stem cells and bulk glioma cells, while GLUT3 knockdown results in obvious cell metabolism and proliferation inhibition, and further glioma stem cells percentage down-regulation. Moreover, systemic delivery of NPsiGLUT3, via intravenous injection, significantly inhibited tumor growth in a U87MG xenograft model, due to the reduced expression of GLUT3 and down-regulated stemness of glioma cells.


Advanced Healthcare Materials | 2014

ScFv-Decorated PEG-PLA-Based Nanoparticles for Enhanced siRNA Delivery to Her2+ Breast Cancer

Shuang Dou; Xian-Zhu Yang; Meng-Hua Xiong; Chun-Yang Sun; Yandan Yao; Yan-Hua Zhu; Jun Wang

Patients with Her2-overexpressing (Her2(+)) breast cancers generally have a poorer prognosis due to the high aggressiveness and chemoresistance of the disease. Small interfering RNA (siRNA) targeting the gene encoding polo-like kinase 1 (Plk1; siPlk1) has emerged as an efficient therapeutic agent for Her2(+) breast cancers. Poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-PLA)-based nanoparticles for siRNA delivery were previously developed and optimized. In this study, for targeted delivery of siPlk1 to Her2(+) breast cancer, anti-Her2 single-chain variable fragment antibody (ScFv(Her2))-decorated PEG-PLA-based nanoparticles with si Plk1 encapsulation (ScFv(Her2)-NP(si) Plk1) are developed. With the rationally designed conjugation site, ScFv(Her2)-NP(siRNA) can specifically bind to the Her2 antigen overexpressed on the surface of Her2(+) breast cancer cells. Therefore, ScFv(Her2)-NP(si) Plk1 exhibits improved cellular uptake, promoted Plk1 silencing efficiency, and induced enhanced tumor cell apoptosis in Her2(+) breast cancer cells, when compared with nontargeted NP(si) Plk1. More importantly, ScFv(Her2)-NP(siRNA) markedly enhances the accumulation of siRNA in Her2(+) breast tumor tissue, and remarkably improves the efficacy of tumor suppression. Dose-dependent anti-tumor efficacy further demonstrates that ScFvHer2 -decorated PEG-PLA-based nanoparticles with siPlk1 encapsulation can significantly enhance the inhibition of Her2(+) breast tumor growth and reduce the dose of injected siRNA. These results suggest that ScFvHer2 -decorated PEG-PLA-based nanoparticles show great potential for targeted RNA interference therapy of Her2(+) breast tumor.


Journal of Controlled Release | 2015

Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy.

Song Shen; Xiao-Jiao Du; Jing Liu; Rong Sun; Yan-Hua Zhu; Jun Wang

Basal-like triple negative breast cancer (TNBC) has received particular clinical interest due to its high frequency, poor baseline prognosis and lack of effective clinical therapy. Bortezomib, which was the first proteasome inhibitor approved for the treatment of multiple myeloma, has been proven to be worth investigating for this subtype of breast cancer. In our study, the amphiphilic copolymer poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-b-PLA) was utilized as an excellent delivery carrier of bortezomib (BTZ) to overcome its clinical limitations including low water solubility and unstable properties. Bortezomib encapsulated nanoparticles (NPBTZ) can efficiently deliver the drug into both CSCs (cancer stem cells) and non-CSCs, resulting in proliferation inhibition and apoptosis induction. Remarkably, NPBTZ can more effectively affect the stemness of CSCs compared with free BTZ. Administration of this drug delivery system can markedly prolong the bortezomib circulation half-life and augment the enrichment of drugs in tumor tissue, then enhance the suppression of tumor growth, suggesting the therapeutic promise of NPBTZ delivery in basal-like TNBC therapy.

Collaboration


Dive into the Yan-Hua Zhu's collaboration.

Top Co-Authors

Avatar

Jun Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Song Shen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xian-Zhu Yang

Hefei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiao-Jiao Du

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Chun-Yang Sun

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Rong Sun

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Cong-Fei Xu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Hong-Jun Li

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hong-Xia Wang

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge