Congcong Zhou
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Congcong Zhou.
Nature | 2012
Xuehui Huang; Nori Kurata; Xinghua Wei; Zi-Xuan Wang; Ahong Wang; Qiang Zhao; Yan Zhao; K. Liu; Hengyun Lu; Wenjun Li; Yunli Guo; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Chuanrang Zhu; Tao Huang; Lei Zhang; Yongchun Wang; Lei Feng; Hiroyasu Furuumi; Takahiko Kubo; Toshie Miyabayashi; Xiaoping Yuan; Qun Xu; Guojun Dong; Qilin Zhan; Canyang Li; Asao Fujiyama; Atsushi Toyoda
Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.
Nature Genetics | 2013
Zhenhua Peng; Ying Lu; Lubin Li; Qiang Zhao; Qi Feng; Zhimin Gao; Hengyun Lu; Tao Hu; Na Yao; K. Liu; Yan Li; Danlin Fan; Yunli Guo; Wenjun Li; Yiqi Lu; Qijun Weng; Congcong Zhou; Lei Zhang; Tao Huang; Yan Zhao; Chuanrang Zhu; Xing'e Liu; Xuewen Yang; Tao Wang; Kun Miao; Caiyun Zhuang; Xiaolu Cao; Wenli Tang; Guanshui Liu; Yingli Liu
Bamboo represents the only major lineage of grasses that is native to forests and is one of the most important non-timber forest products in the world. However, no species in the Bambusoideae subfamily has been sequenced. Here, we report a high-quality draft genome sequence of moso bamboo (P. heterocycla var. pubescens). The 2.05-Gb assembly covers 95% of the genomic region. Gene prediction modeling identified 31,987 genes, most of which are supported by cDNA and deep RNA sequencing data. Analyses of clustered gene families and gene collinearity show that bamboo underwent whole-genome duplication 7–12 million years ago. Identification of gene families that are key in cell wall biosynthesis suggests that the whole-genome duplication event generated more gene duplicates involved in bamboo shoot development. RNA sequencing analysis of bamboo flowering tissues suggests a potential connection between drought-responsive and flowering genes.
Nature Genetics | 2013
Guanqing Jia; Xuehui Huang; Hui Zhi; Yan Zhao; Qiang Zhao; Wenjun Li; Yang Chai; Lifang Yang; K. Liu; Hengyun Lu; Chuanrang Zhu; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Yunli Guo; Tao Huang; Lei Zhang; Tingting Lu; Qi Feng; Hangfei Hao; Hongkuan Liu; Ping Lu; Ning Zhang; Yuhui Li; Erhu Guo; Shujun Wang; Suying Wang; Jinrong Liu; Wenfei Zhang
Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.
Nature Genetics | 2015
Yaping Wang; Ying Lu; Yong Zhang; Zemin Ning; Yan Li; Qiang Zhao; Hengyun Lu; Rong Huang; Xiao-Qin Xia; Qi Feng; Xu-Fang Liang; K. Liu; Lei Zhang; Tingting Lu; Tao Huang; Danlin Fan; Qijun Weng; Chuanrang Zhu; Yiqi Lu; Wenjun Li; Ziruo Wen; Congcong Zhou; Qilin Tian; Xiaojun Kang; Mijuan Shi; Wanting Zhang; Songhun Jang; Fukuan Du; Shan He; Lanjie Liao
The grass carp is an important farmed fish, accounting for ∼16% of global freshwater aquaculture, and has a vegetarian diet. Here we report a 0.9-Gb draft genome of a gynogenetic female adult and a 1.07-Gb genome of a wild male adult. Genome annotation identified 27,263 protein-coding gene models in the female genome. A total of 114 scaffolds consisting of 573 Mb are anchored on 24 linkage groups. Divergence between grass carp and zebrafish is estimated to have occurred 49–54 million years ago. We identify a chromosome fusion in grass carp relative to zebrafish and report frequent crossovers between the grass carp X and Y chromosomes. We find that transcriptional activation of the mevalonate pathway and steroid biosynthesis in liver is associated with the grass carps adaptation from a carnivorous to an herbivorous diet. We believe that the grass carp genome could serve as an initial platform for breeding better-quality fish using a genomic approach.
RNA | 2015
Tingting Lu; Lingling Cui; Yan Zhou; Chuanrang Zhu; Danlin Fan; Hao Gong; Qiang Zhao; Congcong Zhou; Yan Zhao; Danfeng Lu; Jianghong Luo; Yongchun Wang; Qilin Tian; Qi Feng; Tao Huang; Bin Han
Various stable circular RNAs (circRNAs) are newly identified to be the abundance of noncoding RNAs in Archaea, Caenorhabditis elegans, mice, and humans through high-throughput deep sequencing coupled with analysis of massive transcriptional data. CircRNAs play important roles in miRNA function and transcriptional controlling by acting as competing endogenous RNAs or positive regulators on their parent coding genes. However, little is known regarding circRNAs in plants. Here, we report 2354 rice circRNAs that were identified through deep sequencing and computational analysis of ssRNA-seq data. Among them, 1356 are exonic circRNAs. Some circRNAs exhibit tissue-specific expression. Rice circRNAs have a considerable number of isoforms, including alternative backsplicing and alternative splicing circularization patterns. Parental genes with multiple exons are preferentially circularized. Only 484 circRNAs have backsplices derived from known splice sites. In addition, only 92 circRNAs were found to be enriched for miniature inverted-repeat transposable elements (MITEs) in flanking sequences or to be complementary to at least 18-bp flanking intronic sequences, indicating that there are some other production mechanisms in addition to direct backsplicing in rice. Rice circRNAs have no significant enrichment for miRNA target sites. A transgenic study showed that overexpression of a circRNA construct could reduce the expression level of its parental gene in transgenic plants compared with empty-vector control plants. This suggested that circRNA and its linear form might act as a negative regulator of its parental gene. Overall, these analyses reveal the prevalence of circRNAs in rice and provide new biological insights into rice circRNAs.
Nature Communications | 2015
Xuehui Huang; Shihua Yang; Junyi Gong; Yan Zhao; Qi Feng; Hao Gong; Wenjun Li; Qilin Zhan; Benyi Cheng; Junhui Xia; Neng Chen; Zhongna Hao; K. Liu; Chuanrang Zhu; Tao Huang; Qiang Zhao; Lei Zhang; Danlin Fan; Congcong Zhou; Yiqi Lu; Qijun Weng; Zi-Xuan Wang; Jiayang Li; Bin Han
Exploitation of heterosis is one of the most important applications of genetics in agriculture. However, the genetic mechanisms of heterosis are only partly understood, and a global view of heterosis from a representative number of hybrid combinations is lacking. Here we develop an integrated genomic approach to construct a genome map for 1,495 elite hybrid rice varieties and their inbred parental lines. We investigate 38 agronomic traits and identify 130 associated loci. In-depth analyses of the effects of heterozygous genotypes reveal that there are only a few loci with strong overdominance effects in hybrids, but a strong correlation is observed between the yield and the number of superior alleles. While most parental inbred lines have only a small number of superior alleles, high-yielding hybrid varieties have several. We conclude that the accumulation of numerous rare superior alleles with positive dominance is an important contributor to the heterotic phenomena.
Nature | 2016
Xuehui Huang; Shihua Yang; Junyi Gong; Qiang Zhao; Qi Feng; Qilin Zhan; Yan Zhao; Wenjun Li; Benyi Cheng; Junhui Xia; Neng Chen; Tao Huang; Lei Zhang; Danlin Fan; Jiaying Chen; Congcong Zhou; Yiqi Lu; Qijun Weng; Bin Han
Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.
Nature Communications | 2015
Xin Wei; K. Liu; Yanxin Zhang; Qi Feng; Linhai Wang; Yan Zhao; Donghua Li; Qiang Zhao; Xiaodong Zhu; Xiaofeng Zhu; Wenjun Li; Danlin Fan; Yuan Gao; Yiqi Lu; Xianmei Zhang; Xiumei Tang; Congcong Zhou; Chuanrang Zhu; Lifeng Liu; Ruichun Zhong; Qilin Tian; Ziruo Wen; Qijun Weng; Bin Han; Xuehui Huang; Xiurong Zhang
Oilseed crops are used to produce vegetable oil. Sesame (Sesamum indicum), an oilseed crop grown worldwide, has high oil content and a small diploid genome, but the genetic basis of oil production and quality is unclear. Here we sequence 705 diverse sesame varieties to construct a haplotype map of the sesame genome and de novo assemble two representative varieties to identify sequence variations. We investigate 56 agronomic traits in four environments and identify 549 associated loci. Examination of the major loci identifies 46 candidate causative genes, including genes related to oil content, fatty acid biosynthesis and yield. Several of the candidate genes for oil content encode enzymes involved in oil metabolism. Two major genes associated with lignification and black pigmentation in the seed coat are also associated with large variation in oil content. These findings may inform breeding and improvement strategies for a broad range of oilseed crops.
Nature Genetics | 2018
Qiang Zhao; Qi Feng; Hengyun Lu; Yan Li; Ahong Wang; Qilin Tian; Qilin Zhan; Yiqi Lu; Lei Zhang; Tao Huang; Yongchun Wang; Danlin Fan; Yan Zhao; Ziqun Wang; Congcong Zhou; Jiaying Chen; Chuanrang Zhu; Wenjun Li; Qijun Weng; Qun Xu; Zi-Xuan Wang; Xinghua Wei; Bin Han; Xuehui Huang
The rich genetic diversity in Oryza sativa and Oryza rufipogon serves as the main sources in rice breeding. Large-scale resequencing has been undertaken to discover allelic variants in rice, but much of the information for genetic variation is often lost by direct mapping of short sequence reads onto the O. sativa japonica Nipponbare reference genome. Here we constructed a pan-genome dataset ofxa0the O. sativa–O. rufipogon species complex through deep sequencing and de novo assembly of 66 divergent accessions. Intergenomic comparisons identified 23 million sequence variants in the rice genome. This catalog of sequence variations includes many known quantitative trait nucleotides and will be helpful in pinpointing new causal variants that underlie complex traits. In particular, we systemically investigated the whole set of coding genes using this pan-genome data, which revealed extensive presence and absence of variation among rice accessions. This pan-genome resource will further promote evolutionary and functional studies in rice.A pan-genome dataset of the Oryza sativa–Oryza rufipogon species complex generatedxa0through deep sequencing and de novo genome assembly of 66 divergent accessions will be helpful in pinpointing new causal variants underlying complex traits and in promoting evolutionary and functional studies in rice.
Nature Genetics | 2018
Qiang Zhao; Qi Feng; Hengyun Lu; Yan Li; Ahong Wang; Qilin Tian; Qilin Zhan; Yiqi Lu; Lei Zhang; Tao Huang; Yongchun Wang; Danlin Fan; Yan Zhao; Ziqun Wang; Congcong Zhou; Jiaying Chen; Chuanrang Zhu; Wenjun Li; Qijun Weng; Qun Xu; Zi-Xuan Wang; Xinghua Wei; Bin Han; Xuehui Huang
When published, this article did not initially appear open access. This error has been corrected, and the open access status of the paper is noted in all versions of the paper.