Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conor K. McGarry is active.

Publication


Featured researches published by Conor K. McGarry.


International Journal of Radiation Oncology Biology Physics | 2011

Out-of-field cell survival following exposure to intensity-modulated radiation fields

Karl T. Butterworth; Conor K. McGarry; Colman Trainor; Joe M. O'Sullivan; A.R. Hounsell; Kevin Prise

PURPOSE To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. METHODS AND MATERIALS Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. RESULTS Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the α-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. CONCLUSIONS These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.


PLOS ONE | 2013

A Kinetic-Based Model of Radiation-Induced Intercellular Signalling

Stephen J. McMahon; Karl T. Butterworth; Colman Trainor; Conor K. McGarry; Joe M. O’Sullivan; Giuseppe Schettino; A.R. Hounsell; Kevin Prise

It is now widely accepted that intercellular communication can cause significant variations in cellular responses to genotoxic stress. The radiation-induced bystander effect is a prime example of this effect, where cells shielded from radiation exposure see a significant reduction in survival when cultured with irradiated cells. However, there is a lack of robust, quantitative models of this effect which are widely applicable. In this work, we present a novel mathematical model of radiation-induced intercellular signalling which incorporates signal production and response kinetics together with the effects of direct irradiation, and test it against published data sets, including modulated field exposures. This model suggests that these so-called “bystander” effects play a significant role in determining cellular survival, even in directly irradiated populations, meaning that the inclusion of intercellular communication may be essential to produce robust models of radio-biological outcomes in clinically relevant in vivo situations.


PLOS ONE | 2012

DNA Damage Responses following Exposure to Modulated Radiation Fields

Colman Trainor; Karl T. Butterworth; Conor K. McGarry; Stephen J. McMahon; Joe M. O’Sullivan; A.R. Hounsell; Kevin Prise

During the delivery of advanced radiotherapy treatment techniques modulated beams are utilised to increase dose conformity across the target volume. Recent investigations have highlighted differential cellular responses to modulated radiation fields particularly in areas outside the primary treatment field that cannot be accounted for by scattered dose alone. In the present study, we determined the DNA damage response within the normal human fibroblast AG0-1522B and the prostate cancer cell line DU-145 utilising the DNA damage assay. Cells plated in slide flasks were exposed to 1 Gy uniform or modulated radiation fields. Modulated fields were delivered by shielding 25%, 50% or 75% of the flask during irradiation. The average number of 53BP1 or γH2AX foci was measured in 2 mm intervals across the slide area. Following 30 minutes after modulated radiation field exposure an increase in the average number of foci out-of-field was observed when compared to non-irradiated controls. In-field, a non-uniform response was observed with a significant decrease in the average number of foci compared to uniformly irradiated cells. Following 24 hrs after exposure there is evidence for two populations of responding cells to bystander signals in-and out-of-field. There was no significant difference in DNA damage response between 25%, 50% or 75% modulated fields. The response was dependent on cellular secreted intercellular signalling as physical inhibition of intercellular communication abrogated the observed response. Elevated residual DNA damage observed within out-of-field regions decreased following addition of an inducible nitric oxide synthase inhibitor (Aminoguanidine). These data show, for the first time, differential DNA damage responses in-and out-of-field following modulated radiation field delivery. This study provides further evidence for a role of intercellular communication in mediating cellular radiobiological response to modulated radiation fields and may inform the refinement of existing radiobiological models for the optimization of advanced radiotherapy treatment plans.


Medical Physics | 2011

Assessing software upgrades, plan properties and patient geometry using intensity modulated radiation therapy (IMRT) complexity metrics

Conor K. McGarry; Candice D. Chinneck; Monica M. O'Toole; Joe M. O'Sullivan; Kevin Prise; A.R. Hounsell

PURPOSE The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed. METHOD A program was developed to calculate a series of metrics used to describe the complexity of IMRT fields using monitor units (MUs) and multileaf collimator files: Modulation index (MI), modulation complexity score (MCS), and plan intensity map variation (PIMV). Each metric, including the MUs, was used to assess changes in beam complexity for six prostate patients, following upgrades in the inverse planning optimization software designed to incorporate direct aperture optimization (DAO). All beams were delivered to a 2D ionization chamber array and compared to those calculated using gamma analysis. Each complexity metric was then calculated for all beams, on a different set of six prostate IMRT patients, to assess differences between plans calculated using different minimum field sizes and different maximum segment numbers. Different geometries, including CShape, prostate, and head and neck phantoms, were also assessed using the metrics. Correlations between complexity metrics were calculated for 20 prostate IMRT patients. RESULTS MU, MCS, MI, and PIMV could all detect reduced complexity following an upgrade to the optimization leaf sequencer, although only MI and MCS could detect a reduction in complexity when one-step optimization (DAO) was employed rather than two-step optimization. All metrics detected a reduction in complexity when the minimum field size was increased from 1 to 4 cm and all apart from PIMV detected reduced complexity when the number of segments was significantly reduced. All metrics apart from MI showed differences in complexity depending on the treatment site. Significant correlations exist between all metrics apart from MI and PIMV for prostate IMRT patients. Treatment deliverability appeared to be more correlated with MI and MCS than MU or PIMV. CONCLUSIONS The application of complexity metrics in the IMRT treatment planning process has been demonstrated. Complexity of treatment plans can vary for different inverse planning software versions and can depend on planning parameters and the treatment site. MCS is most suitable for inclusion within the cost function to limit complexity in IMRT optimization due to its sensitivity to complexity changes and correlation to treatment deliverability.


Physics in Medicine and Biology | 2012

Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields

Karl T. Butterworth; Conor K. McGarry; Colman Trainor; Stephen J. McMahon; Joe M. O’Sullivan; Giuseppe Schettino; A.R. Hounsell; Kevin Prise

For the delivery of intensity-modulated radiation therapy (IMRT), highly modulated fields are used to achieve dose conformity across a target tumour volume. Recent in vitro evidence has demonstrated significant alterations in cell survival occurring out-of-field which cannot be accounted for on the basis of scattered dose. The radiobiological effect of area, dose and dose-rate on out-of-field cell survival responses following exposure to intensity-modulated radiation fields is presented in this study. Cell survival was determined by clonogenic assay in human prostate cancer (DU-145) and primary fibroblast (AG0-1522) cells following exposure to different modulated field configurations delivered using a X-Rad 225 kVp x-ray source. Uniform survival responses were compared to in- and out-of-field responses in which 25-99% of the cell population was shielded. Dose delivered to the out-of-field region was varied from 1.6-37.2% of that delivered to the in-field region using different levels of brass shielding. Dose rate effects were determined for 0.2-4 Gy min⁻¹ for uniform and modulated exposures with no effect seen in- or out-of-field. Survival responses showed little dependence on dose rate and area in- and out-of-field with a trend towards increased survival with decreased in-field area. Out-of-field survival responses were shown to scale in proportion to dose delivered to the in-field region and also local dose delivered out-of-field. Mathematical modelling of these findings has shown survival response to be highly dependent on dose delivered in- and out-of-field but not on area or dose rate. These data provide further insight into the radiobiological parameters impacting on cell survival following exposure to modulated irradiation fields highlighting the need for refinement of existing radiobiological models to incorporate non-targeted effects and modulated dose distributions.


British Journal of Radiology | 2011

Assessing the daily consistency of bladder filling using an ultrasonic Bladderscan device in men receiving radical conformal radiotherapy for prostate cancer

S Hynds; Conor K. McGarry; Darren M. Mitchell; S Early; L Shum; D P Stewart; J A Harney; C R Cardwell; Joe M. O'Sullivan

OBJECTIVE Consistency in target organ and organ at risk position from planning to treatment is an important basic principle of radiotherapy. This study evaluates the effectiveness of bladder-filling instructions in achieving a consistent and reproducible bladder volume at the time of planning CT and daily during the course of radical radiotherapy for prostate cancer. It also assessed the rate of bladder filling before and at the end of radiotherapy. METHODS 30 men attending for radiation therapy planning for prostate cancer received written and verbal bladder-filling instructions. They had their bladder volume assessed using a bladder ultrasound scanner post-void, immediately prior to planning CT scan and then daily immediately prior to treatment while in the therapy position. The inflow was calculated using the void and full bladder volumes and the time for the bladder to fill. RESULTS The mean bladder volume at the time of planning was 282 ml (range 89-608 ml, standard deviation (SD) = 144.5 ml). This fell during treatment, with a mean value for all treatments of 189 ml (range 11-781 ml, SD = 134 ml). During radiotherapy, 76% (828/1090), 53% (579/1090) and 36% (393/1090) of bladder volumes had >50 ml, >100 ml and >150 ml difference, respectively when compared with their volume at the time of planning. Inflow reduced from 4.6 ml min(-1), SD = 2.9 min(-1) at planning to 2.5 min(-1), SD = 1.8 min(-1) after radiotherapy. CONCLUSION The Bladderscan device (BVI 6400 Bladderscan, Verathon Medical UK, Sandford, UK) provides an effective means of assessing bladder volume prior to radiotherapy for prostate cancer. The evaluated bladder-filling protocol does not produce consistent, reproducible bladder volumes for radiotherapy.


Physics in Medicine and Biology | 2010

A study of the biological effects of modulated 6 MV radiation fields.

Karl T. Butterworth; Conor K. McGarry; Joe M. O'Sullivan; A.R. Hounsell; Kevin Prise

The delivery of spatially modulated radiation fields has been shown to impact on in vitro cell survival responses. To study the effect of modulated fields on cell survival, dose response curves were determined for human DU-145 prostate, T98G glioma tumour cells and normal primary AGO-1552 fibroblast cells exposed to modulated and non-modulated field configurations delivered using a 6 MV Linac with multi-leaf collimator. When exposed to uniform fields delivered as a non-modulated or modulated configuration, no significant differences in survival were observed with the exception of DU-145 cells at a dose of 8 Gy (p = 0.024). Survival responses were determined for exposure to non-uniform-modulated beams in DU-145 and T98G and showed no deviation from the survival response observed following uniform non-modulated exposures. The results of these experiments indicate no major deviation in response to modulated fields compared to uniform exposures.


Medical Physics | 2013

Octavius 4D characterization for flattened and flattening filter free rotational deliveries

Conor K. McGarry; Barry F. O'Connell; Mark W. D. Grattan; Christina E. Agnew; Denise M. Irvine; A.R. Hounsell

PURPOSE In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans. METHODS The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%∕3 mm tolerances and 2%∕2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution. RESULTS A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy∕min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 × 2 cm(2) fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4° of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%∕3 mm and 2%∕2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film. CONCLUSIONS The Octavius 4D phantom with associated Octavius detector 729 ionization chamber array is a dosimetrically and mechanically stable device for pretreatment verification of FF and FFF RapidArc treatments. Further improvements may be possible through use of a detector array with higher spatial resolution (detector size and∕or detector spacing).


Journal of Applied Clinical Medical Physics | 2014

Correlation of phantom-based and log file patient-specific QA with complexity scores for VMAT

Christina E. Agnew; Denise M. Irvine; Conor K. McGarry

The motivation for this study was to reduce physics workload relating to patient‐specific quality assurance (QA). VMAT plan delivery accuracy was determined from analysis of pre‐ and on‐treatment trajectory log files and phantom‐based ionization chamber array measurements. The correlation in this combination of measurements for patient‐specific QA was investigated. The relationship between delivery errors and plan complexity was investigated as a potential method to further reduce patient‐specific QA workload. Thirty VMAT plans from three treatment sites — prostate only, prostate and pelvic node (PPN), and head and neck (H&N) — were retrospectively analyzed in this work. The 2D fluence delivery reconstructed from pretreatment and on‐treatment trajectory log files was compared with the planned fluence using gamma analysis. Pretreatment dose delivery verification was also carried out using gamma analysis of ionization chamber array measurements compared with calculated doses. Pearson correlations were used to explore any relationship between trajectory log file (pretreatment and on‐treatment) and ionization chamber array gamma results (pretreatment). Plan complexity was assessed using the MU/ arc and the modulation complexity score (MCS), with Pearson correlations used to examine any relationships between complexity metrics and plan delivery accuracy. Trajectory log files were also used to further explore the accuracy of MLC and gantry positions. Pretreatment 1%/1 mm gamma passing rates for trajectory log file analysis were 99.1% (98.7%–99.2%), 99.3% (99.1%–99.5%), and 98.4% (97.3%–98.8%) (median (IQR)) for prostate, PPN, and H&N, respectively, and were significantly correlated to on‐treatment trajectory log file gamma results (R=0.989,p<0.001). Pretreatment ionization chamber array (2%/2 mm) gamma results were also significantly correlated with on‐treatment trajectory log file gamma results (R=0.623,p<0.001). Furthermore, all gamma results displayed a significant correlation with MCS (R>0.57,p<0.001), but not with MU/arc. Average MLC position and gantry angle errors were 0.001±0.002mm and 0.025°±0.008° over all treatment sites and were not found to affect delivery accuracy. However, variability in MLC speed was found to be directly related to MLC position accuracy. The accuracy of VMAT plan delivery assessed using pretreatment trajectory log file fluence delivery and ionization chamber array measurements were strongly correlated with on‐treatment trajectory log file fluence delivery. The strong correlation between trajectory log file and phantom‐based gamma results demonstrates potential to reduce our current patient‐specific QA. Additionally, insight into MLC and gantry position accuracy through trajectory log file analysis and the strong correlation between gamma analysis results and the MCS could also provide further methodologies to both optimize the VMAT planning and QA process. PACS number: 87.53.Bn, 87.55.Kh, 87.55.Qr


Radiation Research | 2012

Cell Survival Responses after Exposure to Modulated Radiation Fields

Colman Trainor; Karl T. Butterworth; Conor K. McGarry; Fabio Liberante; Joe M. O'Sullivan; A.R. Hounsell; Kevin Prise

In the present study survival responses were determined in cells with differing radiosensitivity, specifically primary fibroblast (AG0-1522B), human breast cancer (MDA-MB-231), human prostate cancer (DU-145) and human glioma (T98G) cells, after exposure to modulated radiation fields delivered by shielding 50% of the tissue culture flask. A significant decrease (P < 0.05) in cell survival was observed in the shielded area, outside the primary treatment field (out-of-field), that was lower than predicted when compared to uniform exposures fitted to the linear-quadratic model. Cellular radiosensitivity was demonstrated to be an important factor in the level of response for both the in- and out-of-field regions. These responses were shown to be dependent on secretion-mediated intercellular communication, because inhibition of cellular secreted factors between the in- and out-of-field regions abrogated the response. Out-of-field cell survival was shown to increase after pretreatment of cells with agents known to inhibit factors involved in mediating radiation-induced bystander signaling (aminoguanidine, DMSO or cPTIO). These data illustrate a significant decrease in survival out-of-field, dependent upon intercellular communication, in several cell lines with varying radiosensitivity after exposure to a modulated radiation field. This study provides further evidence for the importance of intercellular signaling in modulated exposures, where dose gradients are present, and may inform the refinement of established radiobiological models to facilitate the optimization of advanced radiotherapy treatment plans.

Collaboration


Dive into the Conor K. McGarry's collaboration.

Top Co-Authors

Avatar

A.R. Hounsell

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Joe M. O'Sullivan

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneil Jain

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Christina E. Agnew

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar

Colman Trainor

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Denise M. Irvine

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar

Aidan J Cole

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge