Corey A. Joiner
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Corey A. Joiner.
ACS Applied Materials & Interfaces | 2015
Meng-Yen Tsai; Alexey Tarasov; Zohreh R. Hesabi; Hossein Taghinejad; Philip M. Campbell; Corey A. Joiner; Ali Adibi; Eric M. Vogel
Atomically thin molybdenum disulfide (MoS2) is a promising two-dimensional semiconductor for high-performance flexible electronics, sensors, transducers, and energy conversion. Here, piezoresistive strain sensing with flexible MoS2 field-effect transistors (FETs) made from highly uniform large-area films is demonstrated. The origin of the piezoresistivity in MoS2 is the strain-induced band gap change, which is confirmed by optical reflection spectroscopy. In addition, the sensitivity to strain can be tuned by more than 1 order of magnitude by adjusting the Fermi level via gate biasing.
Applied Physics Letters | 2014
Tania Roy; L. Liu; S. de la Barrera; Bhaswar Chakrabarti; Zohreh R. Hesabi; Corey A. Joiner; R. M. Feenstra; Gong Gu; Eric M. Vogel
Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene–hexagonal boron nitride–graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene–hexagonal boron nitride–graphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.
ACS Nano | 2015
Philip M. Campbell; Alexey B. Tarasov; Corey A. Joiner; William J. Ready; Eric M. Vogel
Tunneling transistors with negative differential resistance have widespread appeal for both digital and analog electronics. However, most attempts to demonstrate resonant tunneling devices, including graphene-insulator-graphene structures, have resulted in low peak-to-valley ratios, limiting their application. We theoretically demonstrate that vertical heterostructures consisting of two identical monolayer 2D transition-metal dichalcogenide semiconductor electrodes and a hexagonal boron nitride barrier result in a peak-to-valley ratio several orders of magnitude higher than the best that can be achieved using graphene electrodes. The peak-to-valley ratio is large even at coherence lengths on the order of a few nanometers, making these devices appealing for nanoscale electronics.
ACS Applied Materials & Interfaces | 2015
Ali Abdelhafiz; Adam Vitale; Corey A. Joiner; Eric M. Vogel; Faisal M. Alamgir
In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.
Applied Physics Letters | 2014
Corey A. Joiner; Tania Roy; Zohreh R. Hesabi; B. Chakrabarti; Eric M. Vogel
Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.
2D Materials | 2015
Alexey Tarasov; Meng-Yen Tsai; Erin M Flynn; Corey A. Joiner; Robert C Taylor; Eric M. Vogel
Field-effect transistors (FETs) based on large-area graphene and other 2D materials can potentially be used as low-cost and flexible potentiometric biological sensors. However, there have been few attempts to use these devices for quantifying molecular interactions and to compare their performance to established sensor technology. Here, gold-coated graphene FETs are used to measure the binding affinity of a specific protein–antibody interaction. Having a gold surface gives access to well-known thiol chemistry for the self-assembly of linker molecules. The results are compared with potentiometric silicon-based extended-gate sensors and a surface plasmon resonance system. The estimated dissociation constants are in excellent agreement for all sensor types as long as the active surfaces are the same (gold). The role of the graphene transducer is to simply amplify surface potential changes caused by adsorption of molecules on the gold surface.
Journal of Applied Physics | 2016
Philip M. Campbell; Alexey Tarasov; Corey A. Joiner; W. Jud Ready; Eric M. Vogel
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect ...
ACS Applied Materials & Interfaces | 2016
Corey A. Joiner; Philip M. Campbell; Alexey Tarasov; Brian R. Beatty; Chris J. Perini; Meng-Yen Tsai; William J. Ready; Eric M. Vogel
Tunneling devices based on vertical heterostructures of graphene and other 2D materials can overcome the low on-off ratios typically observed in planar graphene field-effect transistors. This study addresses the impact of processing conditions on two-dimensional materials in a fully integrated heterostructure device fabrication process. In this paper, graphene-molybdenum disulfide-graphene tunneling heterostructures were fabricated using only large-area synthesized materials, unlike previous studies that used small exfoliated flakes. The MoS2 tunneling barrier is either synthesized on a sacrificial substrate and transferred to the bottom-layer graphene or synthesized directly on CVD graphene. The presence of graphene was shown to have no impact on the quality of the grown MoS2. The thickness uniformity of MoS2 grown on graphene and SiO2 was found to be 1.8 ± 0.22 nm. XPS and Raman spectroscopy are used to show how the MoS2 synthesis process introduces defects into the graphene structure by incorporating sulfur into the graphene. The incorporation of sulfur was shown to be greatly reduced in the absence of molybdenum suggesting molybdenum acts as a catalyst for sulfur incorporation. Tunneling simulations based on the Bardeen transfer Hamiltonian were performed and compared to the experimental tunneling results. The simulations show the use of MoS2 as a tunneling barrier suppresses contributions to the tunneling current from the conduction band. This is a result of the observed reduction of electron conduction within the graphene sheets.
device research conference | 2013
Bhaswar Chakrabarti; Tania Roy; Corey A. Joiner; Zohreh R. Hesabi; Eric M. Vogel
Graphene as a conducting electrode has attracted significant attention due to its low sheet resistance, high flexibility and high transparency [1]. Recently, high out-of-plane resistance of graphene has been utilized to reduce the operating current in metal oxide based resistive memories (RRAMs) [2]. However, this report also indicates that the high out-of-plane resistance of graphene contributes to the requirement of high-voltage forming (6 V) [2]. Since the forming step requires significantly higher voltage compared to regular set/reset operations, elimination of the forming step while maintaining the low-current operability is important for graphene RRAMs.In this work we demonstrate forming-free resistive switching in graphene-insulator-graphene (G-I-G) structures with graphene used as both top and bottom electrodes.
Energy and Environmental Science | 2018
Ali Abdelhafiz; Adam Vitale; Parker Buntin; Ben deGlee; Corey A. Joiner; Alex W. Robertson; Eric M. Vogel; Jamie H. Warner; Faisal M. Alamgir
In this study, we demonstrate dual roles for graphene, as both a platform for large-area, fully-wetted growth of two-dimensional Pt films that are one monolayer to several multilayers thick, while also serving as a ‘chemically transparent’ barrier to catalytic deactivation wherein graphene does not restrict the access of the reactants but does block Pt from dissolution or agglomeration. Using these architectures, we show that it is possible to simultaneously achieve enhanced catalytic activity and unprecedented stability, retaining full activity beyond 1000 cycles, for the canonical oxygen reduction reaction (ORR). Using high resolution TEM, AFM, X-ray photoemission/absorption spectroscopy (XPS/XAS), Raman, and electrochemical methods, we show that, due to intimate graphene–Pt epitaxial contact, Pt_ML/GR hybrid architectures are able to induce a compressive strain on the supported Pt adlayer and increase catalytic activity for ORR. With no appreciable Pt loss or agglomeration observed with the GR/Pt_ML catalysts after 1000 ORR cycles, our results open the door to using similar graphene-templated/graphene-capped hybrid catalysts as means to improve catalyst lifetime without a necessary compromise to their activity. More broadly, the epitaxial growth made possible by the room-temperature, wetted synthesis approach, should allow for efficient transfer of charge, strain, phonons and photons, impacting not just catalysis, but also electronic, thermoelectric and optical materials.