Corinne Gehrig
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Corinne Gehrig.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Lucia Bartoloni; Jean-Louis Blouin; Yanzhen Pan; Corinne Gehrig; Amit K. Maiti; Nathalie Scamuffa; Colette Rossier; Mark Jorissen; Miguel Armengot; Maggie Meeks; Hannah M. Mitchison; Eddie M. K. Chung; Celia D. DeLozier-Blanchet; William J. Craigen
Primary ciliary dyskinesia (PCD; MIM 242650) is an autosomal recessive disorder of ciliary dysfunction with extensive genetic heterogeneity. PCD is characterized by bronchiectasis and upper respiratory tract infections, and half of the patients with PCD have situs inversus (Kartagener syndrome). We characterized the transcript and the genomic organization of the axonemal heavy chain dynein type 11 (DNAH11) gene, the human homologue of murine Dnah11 or lrd, which is mutated in the iv/iv mouse model with situs inversus. To assess the role of DNAH11, which maps on chromosome 7p21, we searched for mutations in the 82 exons of this gene in a patient with situs inversus totalis, and probable Kartagener syndrome associated with paternal uniparental disomy of chromosome 7 (patUPD7). We identified a homozygous nonsense mutation (R2852X) in the DNAH11 gene. This patient is remarkable because he is also homozygous for the F508del allele of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Sequence analysis of the DNAH11 gene in an additional 6 selected PCD sibships that shared DNAH11 alleles revealed polymorphic variants and an R3004Q substitution in a conserved position that might be pathogenic. We conclude that mutations in the coding region of DNAH11 account for situs inversus totalis and probably a minority of cases of PCD.
Nature Genetics | 2012
Sergey Igorievich Nikolaev; Donata Rimoldi; Christian Iseli; Armand Valsesia; Daniel Robyr; Corinne Gehrig; Keith Harshman; Michel Guipponi; Olesya Bukach; Vincent Zoete; Olivier Michielin; Katja Muehlethaler; Daniel E. Speiser; Jacques S. Beckmann; Ioannis Xenarios; Thanos D. Halazonetis; C. Victor Jongeneel; Brian J. Stevenson
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample–specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.
eLife | 2013
Maria Gutierrez-Arcelus; Tuuli Lappalainen; Stephen B. Montgomery; Alfonso Buil; Halit Ongen; Alisa Yurovsky; Thomas Giger; Luciana Romano; Alexandra Planchon; Emilie Falconnet; Deborah Bielser; Maryline Gagnebin; Ismael Padioleau; Christelle Borel; A. Letourneau; Periklis Makrythanasis; Michel Guipponi; Corinne Gehrig; Emmanouil T. Dermitzakis
DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression. DOI: http://dx.doi.org/10.7554/eLife.00523.001
European Journal of Human Genetics | 2009
Robert Lyle; Frédérique Béna; Sarantis Gagos; Corinne Gehrig; Gipsy Lopez; Albert Schinzel; James Lespinasse; Armand Bottani; Sophie Dahoun; Laurence Taine; Martine Doco-Fenzy; Pascale Cornillet-Lefebvre; Anna Pelet; Stanislas Lyonnet; Annick Toutain; Laurence Colleaux; Jürgen Horst; Ingo Kennerknecht; Nobuaki Wakamatsu; Maria Descartes; Judy Franklin; Lina Florentin-Arar; Sophia Kitsiou; Emilie Aı̈t Yahya-Graison; Maher Costantine; Pierre-Marie Sinet; Jean Maurice Delabar
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.
Nature Genetics | 2001
Hamish S. Scott; Jun Kudoh; Marie Wattenhofer; Kazunori Shibuya; Asher Berry; Roman Chrast; Michel Guipponi; Jun Wang; Kazuhiko Kawasaki; Shuichi Asakawa; Shinsei Minoshima; Farah Younus; S. Qasim Mehdi; Uppala Radhakrishna; Marie Pierre Papasavvas; Corinne Gehrig; Colette Rossier; Michael Korostishevsky; Andreas Gal; Nobuyoshi Shimizu; Batsheva Bonne-Tamir
Approximately 50% of childhood deafness is caused by mutations in specific genes. Autosomal recessive loci account for approximately 80% of nonsyndromic genetic deafness. Here we report the identification of a new transmembrane serine protease (TMPRSS3; also known as ECHOS1) expressed in many tissues, including fetal cochlea, which is mutated in the families used to describe both the DFNB10 and DFNB8 loci. An 8-bp deletion and insertion of 18 monomeric (∼68-bp) β-satellite repeat units, normally present in tandem arrays of up to several hundred kilobases on the short arms of acrocentric chromosomes, causes congenital deafness (DFNB10). A mutation in a splice-acceptor site, resulting in a 4-bp insertion in the mRNA and a frameshift, was detected in childhood onset deafness (DFNB8). This is the first description of β-satellite insertion into an active gene resulting in a pathogenic state, and the first description of a protease involved in hearing loss.
American Journal of Human Genetics | 1998
Hamid Mehenni; Corinne Gehrig; Jun-ichi Nezu; Asuka Oku; Miyuki Shimane; Colette Rossier; Nicolas Guex; Jean-Louis Blouin; Hamish S. Scott
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.
American Journal of Human Genetics | 2007
Paola Prandini; Samuel Deutsch; Robert Lyle; Maryline Gagnebin; Celine Delucinge Vivier; Mauro Delorenzi; Corinne Gehrig; Patrick Descombes; Stephanie L. Sherman; Franca Dagna Bricarelli; Chiara Baldo; Antonio Novelli; Bruno Dallapiccola
Down syndrome (DS) is characterized by extensive phenotypic variability, with most traits occurring in only a fraction of affected individuals. Substantial gene-expression variation is present among unaffected individuals, and this variation has a strong genetic component. Since DS is caused by genomic-dosage imbalance, we hypothesize that gene-expression variation of human chromosome 21 (HSA21) genes in individuals with DS has an impact on the phenotypic variability among affected individuals. We studied gene-expression variation in 14 lymphoblastoid and 17 fibroblast cell lines from individuals with DS and an equal number of controls. Gene expression was assayed using quantitative real-time polymerase chain reaction on 100 and 106 HSA21 genes and 23 and 26 non-HSA21 genes in lymphoblastoid and fibroblast cell lines, respectively. Surprisingly, only 39% and 62% of HSA21 genes in lymphoblastoid and fibroblast cells, respectively, showed a statistically significant difference between DS and normal samples, although the average up-regulation of HSA21 genes was close to the expected 1.5-fold in both cell types. Gene-expression variation in DS and normal samples was evaluated using the Kolmogorov-Smirnov test. According to the degree of overlap in expression levels, we classified all genes into 3 groups: (A) nonoverlapping, (B) partially overlapping, and (C) extensively overlapping expression distributions between normal and DS samples. We hypothesize that, in each cell type, group A genes are the most dosage sensitive and are most likely involved in the constant DS traits, group B genes might be involved in variable DS traits, and group C genes are not dosage sensitive and are least likely to participate in DS pathological phenotypes. This study provides the first extensive data set on HSA21 gene-expression variation in DS and underscores its role in modulating the outcome of gene-dosage imbalance.
Nature | 2014
A. Letourneau; Federico Santoni; Ximena Bonilla; M. Reza Sailani; David Gonzalez; Jop Kind; Claire Chevalier; Robert E. Thurman; Richard Sandstrom; Youssef Hibaoui; Marco Garieri; Konstantin Popadin; Emilie Falconnet; Maryline Gagnebin; Corinne Gehrig; Anne Vannier; Michel Guipponi; Laurent Farinelli; Daniel Robyr; Eugenia Migliavacca; Christelle Borel; Samuel Deutsch; Anis Feki; John A. Stamatoyannopoulos; Yann Herault; Bas van Steensel; Roderic Guigó
Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.
PLOS Genetics | 2015
Maria Gutierrez-Arcelus; Halit Ongen; Tuuli Lappalainen; Stephen B. Montgomery; Alfonso Buil; Alisa Yurovsky; Ismael Padioleau; Luciana Romano; Alexandra Planchon; Emilie Falconnet; Deborah Bielser; Maryline Gagnebin; Thomas Giger; Christelle Borel; A. Letourneau; Periklis Makrythanasis; Michel Guipponi; Corinne Gehrig; Emmanouil T. Dermitzakis
Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans’ lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types). This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore, the details of how this tissue-specificity may vary across inter-relations of molecular traits, and where these are occurring, can yield further insights into gene regulation and cellular biology as a whole.
Human Mutation | 2008
Siv Fokstuen; Robert Lyle; Analia Munoz; Corinne Gehrig; René Lerch; Andreas Perrot; Karl Josef Osterziel; Christian Geier; Maurice Beghetti; François Mach; Juan Sztajzel; Ulrich Sigwart; Jean-Louis Blouin
Hypertrophic cardiomyopathy (HCM) is a heterogeneous autosomal dominant cardiac disorder with a prevalence of 1 in 500. Over 450 different pathogenic mutations in at least 16 genes have been identified so far. The large allelic and genetic heterogeneity of HCM requires high‐throughput, rapid, and affordable mutation detection technologies to efficiently integrate molecular screening into clinical practice. We developed a custom DNA resequencing array that contains both strands of all coding exons (160), splice‐site junctions, and 5′UTR regions of 12 genes that have been clearly implicated in HCM (MYH7, MYBPC3, TNNT2, TPM1, TNNI3, MYL3, MYL2, CSRP3, PLN, ACTC, TNNC1, and PRKAG2). We analyzed a first series of 38 unrelated patients with HCM (17 familial, 21 sporadic). A total of 953,306 bp across the 38 patients were sequenced with a mean nucleotide call rate of 96.92% (range: 93–99.9%). Pathogenic mutations (single nucleotide substitutions) in MYH7, MYBPC3, TNNI3, and MYL3 (six known and six novel) were identified in 60% (10/17) of familial HCM and 10% of sporadic cases (2/21). The high‐throughput HCM resequencing array is the most rapid and cost‐effective tool for molecular testing of HCM to date; it thus has considerable potential in diagnostic and predictive testing, and prognostic stratification. Hum Mutat 29(6), 879–885, 2008.