Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinne Ruckly is active.

Publication


Featured researches published by Corinne Ruckly.


Lancet Infectious Diseases | 2011

From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak

François Caron; Isabelle Parent du Châtelet; Jean-Philippe Leroy; Corinne Ruckly; Myriam Blanchard; Nicole Bohic; Nathalie Massy; Isabelle Morer; Daniel Floret; Valérie Delbos; Eva Hong; Martin Révillion; Gilles Berthelot; Ludovic Lemée; Ala-Eddine Deghmane; Jacques Benichou; D Lévy-Bruhl; Muhamed-Kheir Taha

BACKGROUND Outer-membrane-vesicle vaccines for meningococcal B outbreaks are complex and time consuming to develop. We studied the use of already available vaccine to control an outbreak caused by a genetically close strain. METHODS From 2006 to 2009, all individuals younger than 20 years living in the region of Normandy, France, in which an outbreak caused by a B:14:P1.7,16 strain occurred, were eligible to receive MenBvac, a Norwegian vaccine designed 20 years earlier against a strain sharing the same serosubtype (B:15:P1.7,16). The immunogenicity (in a randomly selected cohort of 400 children aged 1-5 years), safety, and epidemiological effect of the vaccination were assessed. FINDINGS 26,014 individuals were eligible to receive the vaccine. Shortage of vaccine production prompted start of the campaign in the highest incidence groups (1-5 years). 16,709 (64%) received a complete vaccination schedule of whom 13,589 (81%) received a 2+1 dose schedule (week 0, week 6, and month 8). At 6 weeks after the third dose, of 235 vaccinees for whom samples were available, 206 (88%) had a seroresponse, and 108 (56 %) of 193 had a seroresponse at 15 months. These results were similar to those described for tailor-made vaccines and their homologous strain. Only previously described adverse effects occurred. The incidence of B:14:P1.7,16 cases decreased significantly in the vaccine targeted population after the primary vaccination period (from 31·6 per 100,000 to 5·9 per 100,000; p=0·001). INTERPRETATION The ready-to-wear approach is reliable if epidemic and vaccine strains are genetically close. Other meningococcal B clonal outbreaks might benefit from this strategy; and previously described outer-membrane-vesicle vaccines can be effective against various strains. FUNDING French Ministry of Health.


Clinical Microbiology and Infection | 2008

Hyperinvasive genotypes of Neisseria meningitidis in France

Maria-Leticia Zarantonelli; Marcelo Lancellotti; Ala-Eddine Deghmane; Dario Giorgini; Eva Hong; Corinne Ruckly; J.M. Alonso; Muhamed-Kheir Taha

Clinical isolates of Neisseria meningitidis from cases of meningococcal disease, collected between January 2000 and December 2004, were identified and typed at the French National Reference Centre. A representative subset of 546 isolates from among 2882 isolates was further genotyped by multilocus sequence typing to determine their genetic lineages (clonal complexes) and the degree of diversification among different clonal complexes. Representative isolates of the main clonal complexes were tested for their virulence in mice and for proapoptotic effects on human epithelial cells. High genetic diversity in some genetic lineages (ST-32 and ST-41/44) was correlated with heterogeneity in virulence in mice and proapoptotic effects on human epithelial cells. In contrast, the homogeneous genetic structure of isolates of the ST-11 clonal complex, regardless of their serogroup, correlated positively with a fatal outcome of the infection, increased virulence in mice and increased proapoptotic effects on human epithelial cells.


Infection and Immunity | 2009

Influenza A Virus Neuraminidase Enhances Meningococcal Adhesion to Epithelial Cells through Interaction with Sialic Acid-Containing Meningococcal Capsules

Marie-Anne Rameix-Welti; Maria Leticia Zarantonelli; Dario Giorgini; Corinne Ruckly; Monica Marasescu; Sylvie van der Werf; Jean-Michel Alonso; Nadia Naffakh; Muhamed-Kheir Taha

ABSTRACT The underlying mechanisms of the epidemiological association between influenza virus infections and Neisseria meningitidis invasive infections are not fully understood. Here we report that adhesion of N. meningitidis to human Hec-1-B epithelial cells is enhanced by influenza A virus (IAV) infection. A potential role of the viral neuraminidase (NA) in facilitating meningococcal adhesion to influenza virus-infected epithelial cells was examined. Expression of a recombinant IAV NA in Hec-1-B human epithelial cells increased the adhesion of strains of N. meningitidis belonging to the sialic acid-containing capsular serogroups B, C, and W135 but not to the mannosamine phosphate-containing capsular serogroup A. Adhesion enhancement was not observed with an inactive NA mutant or in the presence of an NA inhibitor (zanamivir). Furthermore, purified IAV NA was shown to cleave sialic acid-containing capsular polysaccharides of N. meningitidis. On the whole, our findings suggest that a direct interaction between the NA of IAV and the capsule of N. meningitidis enhances bacterial adhesion to cultured epithelial cells, most likely through cleavage of capsular sialic acid-containing polysaccharides. A better understanding of the association between IAV and invasive meningococcal infections should help to set up improved control strategies against these seasonal dual viral-bacterial infections.


Journal of Clinical Microbiology | 2013

Evaluation of CHROMagar STEC and STEC O104 Chromogenic Agar Media for Detection of Shiga Toxin-Producing Escherichia coli in Stool Specimens

Malika Gouali; Corinne Ruckly; Isabelle Carle; Monique Lejay-Collin; François-Xavier Weill

ABSTRACT The performance of CHROMagar STEC and CHROMagar STEC O104 (CHROMagar Microbiology, Paris, France) media for the detection of Shiga toxin-producing Escherichia coli (STEC) was assessed with 329 stool specimens collected over 14 months from patients with suspected STEC infections (June 2011 to August 2012). The CHROMagar STEC medium, after an enrichment broth step, allowed the recovery of the STEC strain from 32 of the 39 (82.1%) Shiga toxin-positive stool specimens, whereas the standard procedure involving Drigalski agar allowed the recovery of only three additional STEC strains. The isolates that grew on CHROMagar STEC medium belonged to 15 serotypes, including the prevalent non-sorbitol-fermenting (NSF) O157:H7, O26:H11, and O104:H4 serotypes. The sensitivity, specificity, and positive and negative predictive values for the CHROMagar STEC medium were between 89.1% and 91.4%, 83.7% and 86.7%, 40% and 51.3%, and 98% and 98.8%, respectively, depending on whether or not stx-negative eae-positive E. coli was considered atypical enteropathogenic E. coli (EPEC) or STEC that had lost Shiga toxin genes during infection. In conclusion, the good performance of CHROMagar STEC agar medium, in particular, the high negative predictive value, and its capacity to identify NSF O157:H7 as well as common non-O157 STEC may be useful for clinical bacteriology, public health, and reference laboratories; it could be used in addition to a method targeting Shiga toxins (detection of stx genes by PCR, immunodetection of Shiga toxins in stool specimens, or Vero cell cytotoxicity assay) as an alternative to O157 culture medium. This combined approach should allow rapid visualization of both putative O157 and non-O157 STEC colonies for subsequent characterization, essential for real-time surveillance of STEC infections and investigations of outbreaks.


PLOS Pathogens | 2009

Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis

Ala-Eddine Deghmane; Carole Veckerlé; Dario Giorgini; Eva Hong; Corinne Ruckly; Muhamed-Kheir Taha

Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx.


The Journal of Infectious Diseases | 2010

Emergence of New Virulent Neisseria meningitidis Serogroup C Sequence Type 11 Isolates in France

Ala-Eddine Deghmane; Isabelle Parent du Chatelet; Marek Szatanik; Eva Hong; Corinne Ruckly; Dario Giorgini; Daniel Lévy-Bruhl; Jean-Michel Alonso; Muhamed-Kheir Taha

In France, there have been variations in the incidence of invasive meningococcal infection due to serogroup C isolates. Infection peaks were observed in 1992 and 2003 that involved isolates of phenotypes C:2a:P1.5,2 and/or C:2a:P1.5, which belong to the sequence type 11 (ST-11) clonal complex. We report an emergence of isolates belonging to the ST-11 clonal complex since 2003. These isolates displayed a new phenotype, C:2a:P1.7,1, caused infections that occurred as clusters, and were associated with increased infection severity and high virulence in mice. These isolates may be responsible for a peak in the incidence of serogroup C meningococcal infection in France, for which there is no routine vaccination to date.


Emerging Infectious Diseases | 2006

Rifampin-resistant Neisseria meningitidis.

Muhamed-Kheir Taha; Maria Leticia Zarantonelli; Corinne Ruckly; Dario Giorgini; Jean-Michel Alonso

To the Editor: Immediate management of meningococcal disease requires antimicrobial drug treatment of patients with β-lactams and chemoprophylaxis of contact persons with rifampin. High-level resistance to rifampin (MIC >32 mg/L) in Neisseria meningitidis is provoked by mutations (most frequently at the residue His 552) in the rpoB gene encoding the b subunit of RNA polymerase (1,2). Resistance may lead to chemoprophylaxis failure and must be rapidly detected (3). Concerns have been raised about the clonal spread of resistant isolates (1); however, rifampin-resistant isolates are rarely reported. We tested 6 N. meningitidis isolates corresponding to 3 pairs of linked cases of meningococcal disease. In each pair, the index case was due to a rifampin-susceptible isolate and was followed by the secondary case due to a resistant isolate in a contact person. Phenotyping and genotyping of the isolates showed that each pair belonged to a different major serogroup (A, B, and C) and to a different genetic lineage (ST-7, ST-32, and ST-2794) (Figure). We next amplified a fragment in rpoB between codons 421 and 701 by using oligonucleotide rpoBF1 (5´gttttcccagtcacgacgttgtaCTGTCCGAAGCCCAACAAAACTCTTGG3´) and rpoBR1 (5´ttgtgagcggataacaatttcTTCCAAGAATGGAATCAGGGATGCTGC3´). The 2 oligonucleotides harbor adaptors (in lower case) corresponding to universal forward and reverse oligonucleotides that can be used for sequencing after amplification. We also analyzed 2 cerebrospinal fluid (CSF) samples corresponding to 2 linked culture-negative cases of meningococcal disease in which the second case was believed to have been caused by rifampin-resistant N. meningitidis. These 2 cases were diagnosed by polymerase chain reaction (PCR) detection of meningococcal DNA, as previously described (4). Figure Blood bacterial counts in 6-week-old female BALB/c mice (Janvier, France), challenged intraperitoneally with standardized inocula of 107 colony forming units (CFU) of rifampin-susceptible (RifS) isolates and their corresponding rifampin-resistant (RifR) ... The 3 rifampin-susceptible isolates harbored a wild-type rpoB sequence (His 552), as did the first CSF sample. All 3 rifampin-resistant isolates harbored a His→Tyr mutation, while analysis of the second CSF sample showed a His→Asn mutation (Figure). Both mutations have been observed in N. meningitidis (3). No other difference in the sequence was seen among all isolates on the amplified fragment. This approach can rapidly detect rpoB mutations and can be applied to culture-negative clinical samples. The virulence of the isolates was evaluated through their ability to provoke bacteremia in mice after 6-week-old female BALB/c mice (Janvier, France) were injected intraperitoneally. Bacteremia is a good indicator of bacterial virulence as it reflects bacterial survival upon invasion of the bloodstream. The experimental design was approved by the Institut Pasteur Review Board. The rifampin-resistant clinical isolate LNP22330 showed substantially reduced bacteremia when compared to the corresponding susceptible isolate LNP21362 (Figure). Such a reduction was not significant for the other 2 pairs (LNP18278/LNP18378 and LNP18368/LNP18491), but these strains were all less virulent than LNP21362, with ≈1 log10 lower blood bacterial loads. The 3 pairs of isolates belonged to different genetic lineages according to the multilocus sequence typing typing. Indeed, we have recently proved that virulence of meningococcal isolates in the mouse model depends on the genetic lineage of the tested isolate (5). To better study the impact of rpoB mutation on meningococcal virulence we constructed an isogenic mutant strain, NM05-08, by transforming the susceptible isolate LNP21362 with a PCR-amplified fragment from a resistant isolate (LNP22330), as previously described (6). The PCR fragment corresponded to the product of amplification between the oligonucleotides ropB1UP (5´ggccgtctgaaCTGTCCGAAGCCCAACAAAACTCTTGG3´) and rpoBR1. The oligonucleotide RpoB1UP is the same as the upstream rpoBF1 but with a DNA uptake sequence (in lower case) that was added at the 5´ end to permit DNA transformation (7). The transformant strain NM05-08 was resistant to rifampin (MIC >32 mg/L), and the sequence of the rpoB gene confirmed the His→Tyr mutation. When compared to the parental isolate (LNP21362), strain NM05-08 showed reduced virulence. Indeed, bacterial loads were similar to those observed for the resistant isolate LNP22330 (Figure). These results strongly suggest a direct negative impact of rpoB mutations on meningococcal virulence. Mutations in the rpoB gene have been reported to confer pleiotropic phenotypes (8). The data reported here show that rifampin-resistant isolates were not clonal but belonged to different genetic lineages. The results of virulence assays in mice suggest that mutations in rpoB in resistant isolates may have a major biological cost for N. meningitidis, which can be defined as lower bacterial fitness in terms of survival in the bloodstream. This biological cost could explain the lack of clonal expansion of meningococcal isolates that acquired resistance to rifampin.


PLOS ONE | 2011

Experimental Meningococcal Sepsis in Congenic Transgenic Mice Expressing Human Transferrin

Marek Szatanik; Eva Hong; Corinne Ruckly; Morgan Ledroit; Dario Giorgini; Katarzyna Jopek; Marie-Anne Nicola; Ala-Eddine Deghmane; Muhamed-Kheir Taha

Severe meningococcal sepsis is still of high morbidity and mortality. Its management may be improved by an experimental model allowing better understanding of its pathophysiology. We developed an animal model of meningococcal sepsis in transgenic BALB/c mice expressing human transferrin. We studied experimental meningococcal sepsis in congenic transgenic BALB/c mice expressing human transferrin by transcriptional profiling using microarray analysis of blood and brain samples. Genes encoding acute phase proteins, chemokines and cytokines constituted the largest strongly regulated groups. Dynamic bioluminescence imaging further showed high blood bacterial loads that were further enhanced after a primary viral infection by influenza A virus. Moreover, IL-1 receptor–associated kinase–3 (IRAK-3) was induced in infected mice. IRAK-3 is a negative regulator of Toll-dependant signaling and its induction may impair innate immunity and hence result in an immunocompromised state allowing bacterial survival and systemic spread during sepsis. This new approach should enable detailed analysis of the pathophysiology of meningococcal sepsis and its relationships with flu infection.


Antimicrobial Agents and Chemotherapy | 2010

Multicenter Study for Defining the Breakpoint for Rifampin Resistance in Neisseria meningitidis by rpoB Sequencing

Muhamed-Kheir Taha; Sara Thulin Hedberg; Marek Szatanik; Eva Hong; Corinne Ruckly; Raquel Abad; Sophie Bertrand; Françoise Carion; Heike Claus; Alejandra Corso; Rocío Enríquez; Sigrid Heuberger; Waleria Hryniewicz; Keith A. Jolley; Paula Kriz; Marta Mollerach; Martin Musilek; Arianna Neri; Per Olcén; Marina Pana; Anna Skoczyńska; Cecilia Sorhouet Pereira; Paola Stefanelli; Georgina Tzanakaki; Magnus Unemo; Julio A. Vázquez; Ulrich Vogel; Izabela Wasko

ABSTRACT Identification of clinical isolates of Neisseria meningitidis that are resistant to rifampin is important to avoid prophylaxis failure in contacts of patients, but it is hindered by the absence of a breakpoint for resistance, despite many efforts toward standardization. We examined a large number (n = 392) of clinical meningococcal isolates, spanning 25 years (1984 to 2009), that were collected in 11 European countries, Argentina, and the Central African Republic. The collection comprises all clinical isolates with MICs of ≥0.25 mg/liter (n = 161) received by the national reference laboratories for meningococci in the participating countries. Representative isolates displaying rifampin MICs of <0.25 mg/liter were also examined (n = 231). Typing of isolates was performed, and a 660-bp DNA fragment of the rpoB gene was sequenced. Sequences differing by at least one nucleotide were defined as unique rpoB alleles. The geometric mean of the MICs was calculated for isolates displaying the same allele. The clinical isolates displaying rifampin MICs of >1 mg/liter possessed rpoB alleles with nonsynonymous mutations at four critical amino acid residues, D542, H552, S548, and S557, that were absent in the alleles found in all isolates with MICs of ≤1 mg/liter. Rifampin-susceptible isolates could be defined as those with MICs of ≤1 mg/liter. The rpoB allele sequence and isolate data have been incorporated into the PubMLST Neisseria database (http://pubmlst.org/neisseria/ ). The rifampin-resistant isolates belonged to diverse genetic lineages and were associated with lower levels of bacteremia and inflammatory cytokines in mice. This biological cost may explain the lack of clonal expansion of these isolates.


Clinical Microbiology and Infection | 2009

Molecular characterization of resistance to rifampicin in clinical isolates of Neisseria meningitidis.

Anna Skoczyńska; Corinne Ruckly; Eva Hong; Muhamed-Kheir Taha

Among 3904 meningococcal isolates collected between October 2002 and June 2007 by the French Meningococcal Reference Centre, eight (0.20%) were resistant to rifampicin (Rif-R; MIC >1 mg/L) and 27 (0.69%) were intermediate-resistant to rifampicin (Rif-I; MICs between 0.38 mg/L and 1 mg/L) according to the E-test method. The MICs determined by agar dilution were lower, eliminating the E-test intermediate category. All Rif-R isolates had mutations in the rpoB gene, resulting in substitutions at or near amino acid position 552, which were absent in non-resistant isolates. These data suggest that a rifampicin clinical breakpoint of 1.0 mg/L should be adopted for Neisseria meningitidis.

Collaboration


Dive into the Corinne Ruckly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge