Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelius Gati is active.

Publication


Featured researches published by Cornelius Gati.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Nature Communications | 2014

Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography

Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian

Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.


Science | 2013

Serial femtosecond crystallography of G protein-coupled receptors.

Wei Liu; Daniel Wacker; Cornelius Gati; Gye Won Han; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Vsevolod Katritch; Anton Barty; Nadia A. Zatsepin; Dianfan Li; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Chong Wang; Syed T. A. Shah; Shibom Basu; Raimund Fromme; Christopher Kupitz; Kimberley Rendek; Ingo Grotjohann; Petra Fromme; Richard A. Kirian; Kenneth R. Beyerlein; Thomas A. White; Henry N. Chapman; Martin Caffrey

G Structures G protein–coupled receptors (GPCRs) are eukaryotic membrane proteins that have a central role in cellular communication and have become key drug targets. To overcome the difficulties of growing GPCRs crystals, Liu et al. (p. 1521) used an x-ray free-electron laser to determine a high-resolution structure of the serotonin receptor from microcrystals. The structure of a human serotonin receptor was solved using a free-electron laser to analyze microcrystals. X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.


Science | 2014

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer; Shibom Basu; Nadia A. Zatsepin; Kanupriya Pande; Despina Milathianaki; Matthias Frank; Mark S. Hunter; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; Dominik Oberthuer; Michael Heymann; Christopher Kupitz; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Uwe Weierstall; Daniel James; Dingjie Wang; Thomas D. Grant; Anton Barty; Oleksandr Yefanov; Jennifer Scales; Cornelius Gati; Carolin Seuring; Vukica Šrajer; Robert Henning; Peter Schwander; Raimund Fromme; A. Ourmazd

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. Structural changes during a macromolecular reaction are captured at near-atomic resolution by an x-ray free electron laser. Watching a protein molecule in motion X-ray crystallography has yielded beautiful high-resolution images that give insight into how proteins function. However, these represent static snapshots of what are often dynamic processes. For photosensitive molecules, time-resolved crystallography at a traditional synchrotron source provides a method to follow structural changes with a time resolution of about 100 ps. X-ray free electron lasers (XFELs) open the possibility of performing time-resolved experiments on time scales as short as femtoseconds. Tenboer et al. used XFELs to study the light-triggered dynamics of photoactive yellow protein. Electron density maps of high quality were obtained 10 ns and 1 µs after initiating the reaction. At 1 µs, two intermediates revealed previously unidentified structural changes. Science, this issue p. 1242


Cell | 2015

Structure of the Angiotensin Receptor Revealed by Serial Femtosecond Crystallography

Haitao Zhang; Hamiyet Unal; Cornelius Gati; Gye Won Han; Wei Liu; Nadia A. Zatsepin; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Michael R. Sawaya; Qingping Xu; Marc Messerschmidt; Garth J. Williams; Sébastien Boutet; Oleksandr Yefanov; Thomas A. White; Chong Wang; Andrii Ishchenko; Kalyan C. Tirupula; Russell Desnoyer; Jesse Coe; Chelsie E. Conrad; Petra Fromme; Raymond C. Stevens; Vsevolod Katritch; Sadashiva S. Karnik; Vadim Cherezov

Angiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.9-Å resolution. The AT(1)R-ZD7155 complex structure revealed key structural features of AT(1)R and critical interactions for ZD7155 binding. Docking simulations of the clinically used ARBs into the AT(1)R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs. Our results thereby provide fundamental insights into AT(1)R structure-function relationship and structure-based drug design.


Science | 2016

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.

Kanupriya Pande; C. Hutchison; Gerrit Groenhof; Andy Aquila; Josef S. Robinson; Jason Tenboer; Shibom Basu; Sébastien Boutet; Daniel P. DePonte; Mengning Liang; Thomas A. White; Nadia A. Zatsepin; Oleksandr Yefanov; Dmitry Morozov; Dominik Oberthuer; Cornelius Gati; Ganesh Subramanian; Daniel James; Yun Zhao; J. D. Koralek; Jennifer Brayshaw; Christopher Kupitz; Chelsie E. Conrad; Shatabdi Roy-Chowdhury; Jesse Coe; Markus Metz; Paulraj Lourdu Xavier; Thomas D. Grant; Jason E. Koglin; Gihan Ketawala

Visualizing a response to light Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein. Science, this issue p. 725 The trans-to-cis isomerization of a key chromophore is characterized on ultrafast time scales. A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.


IUCrJ | 2014

Serial crystallography on in vivo grown microcrystals using synchrotron radiation

Cornelius Gati; Gleb Bourenkov; Marco Klinge; Dirk Rehders; Francesco Stellato; Dominik Oberthür; Oleksandr Yefanov; Benjamin Philip Sommer; Stefan Mogk; Michael Duszenko; Christian Betzel; Thomas R. Schneider; Henry N. Chapman

The structure solution of T. brucei cathepsin B from 80 in vivo grown crystals with an average volume of 9 µm3 obtained by serial synchrotron crystallography at a microfocus beamline is reported.


IUCrJ | 2014

Room-temperature macromolecular serial crystallography using synchrotron radiation

Francesco Stellato; Dominik Oberthür; Mengning Liang; Richard Bean; Cornelius Gati; Oleksandr Yefanov; Anton Barty; Anja Burkhardt; Pontus Fischer; Lorenzo Galli; Richard A. Kirian; Jan Meyer; Saravanan Panneerselvam; Chun Hong Yoon; Fedor Chervinskii; Emily Speller; Thomas A. White; Christian Betzel; Alke Meents; Henry N. Chapman

The room-temperature structure of lysozyme is determined using 40000 individual diffraction patterns from micro-crystals flowing in liquid suspension across a synchrotron microfocus beamline.


Nature Structural & Molecular Biology | 2015

Structural basis for bifunctional peptide recognition at human δ-opioid receptor

Gustavo Fenalti; Nadia A. Zatsepin; Cecilia Betti; Patrick T. Giguere; Gye Won Han; Andrii Ishchenko; Wei-Wei Liu; Karel Guillemyn; Haitao Zhang; Daniel James; Dingjie Wang; Uwe Weierstall; John C. Spence; Sébastien Boutet; M. Messerschmidt; Garth J. Williams; Cornelius Gati; Oleksandr Yefanov; Thomas A. White; Dominik Oberthuer; Markus Metz; Chun Hong Yoon; Anton Barty; Henry N. Chapman; Shibom Basu; Jesse Coe; Chelsie E. Conrad; Raimund Fromme; Petra Fromme; Dirk Tourwé

Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics.


Journal of Applied Crystallography | 2016

Recent developments in CrystFEL

Thomas A. White; Valerio Mariani; Wolfgang Brehm; Oleksandr Yefanov; Anton Barty; Kenneth R. Beyerlein; Fedor Chervinskii; Lorenzo Galli; Cornelius Gati; Takanori Nakane; Alexandra Tolstikova; Keitaro Yamashita; Chun Hong Yoon; Kay Diederichs; Henry N. Chapman

Developments in the CrystFEL software suite, for processing diffraction data from ‘serial crystallography’ experiments, are described.

Collaboration


Dive into the Cornelius Gati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sébastien Boutet

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel James

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Garth J. Williams

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jason E. Koglin

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Fromme

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge